Date de publication du RFC : Décembre 2015
Auteur(s) du RFC : P. Hoffman (ICANN), A. Sullivan
(Dyn), K. Fujiwara (JPRS)
Pour information
Réalisé dans le cadre du groupe de travail IETF dnsop
Première rédaction de cet article le 19 décembre 2015
Comme beaucoup de protocoles très utilisés sur l'Internet, le DNS est ancien. Très ancien (la première norme, le RFC 882, date de 1983). Les normes techniques vieillissent, avec l'expérience, on comprend mieux, on change les points de vue et donc, pour la plupart des protocoles, on se lance de temps en temps dans une révision de la norme. Mais le DNS est une exception : la norme actuelle reste fondée sur des textes de 1987, les RFC 1034 et RFC 1035. Ces documents ne sont plus à jour, modifiés qu'ils ont été par des dizaines d'autres RFC. Bref, aujourd'hui, pour comprendre le DNS, il faut s'apprêter à lire de nombreux documents. En attendant qu'un courageux et charismatique participant à l'IETF se lance dans la tâche herculéenne de faire un jeu de documents propre et à jour, ce nouveau RFC 7719 se limitait à une ambition plus modeste : fixer la terminologie du DNS. Depuis, il a été remplacé par un document plus récent, le RFC 8499.
En effet, chacun peut constater que les discussions portant sur le DNS sont difficiles : on manque de terminologie standard, et celle des RFC officielles ne suffit pas, loin de là. Souvent, le DNS a tellement changé que le RFC officiel est même trompeur : les mots ne veulent plus dire la même chose. D'autres protocoles ont connu des mises à jour de la norme. Cela a été le cas de SMTP, passé successivement du RFC 772 à l'actuel RFC 5321, en passant par plusieurs révisions successives. Ou de XMPP, qui a vu sa norme originale mise à jour dans le RFC 6120. Et bien sûr de HTTP, qui a connu récemment un toilettage complet. Mais personne n'a encore osé faire pareil pour le DNS. Au moins, ce nouveau RFC 7719 traite l'un des problèmes les plus criants, celui du vocabulaire. Le RFC est évidemment en anglais, les traductions proposées dans cet article, et qui n'ont pas de valeur « officielle » sont de moi seul.
Notre RFC 7719 rassemble donc des définitions pour des termes qui étaient parfois précisément définis dans d'autres RFC (et il fournit alors un lien vers ce RFC original), mais aussi qui n'étaient définis qu'approximativement ou parfois qui n'étaient pas définis du tout (et ce RFC fournit alors cette définition). Du fait du flou de certains RFC anciens, et des changements qui ont eu lieu depuis, certaines définitions sont différentes de l'original. Le document a fait l'objet d'un consensus relatif auprès des experts DNS mais quelques termes restent délicats. Notez aussi que d'autres organisations définissent des termes liés au DNS par exemple le W3C a sa propre définition de « domaine ».
Ironiquement, un des termes les plus difficiles à définir est
« DNS » lui-même. D'accord, c'est le sigle de Domain Name
System mais ça veut dire quoi ? « DNS » peut désigner le
schéma de nommage (les noms de domaine
comme signal.eu.org
, leur syntaxe, leurs
contraintes), la base de données répartie (et faiblement
cohérente) qui associe à ces noms
des informations (comme des certificats,
des adresses IP, etc), ou
le protocole requête/réponse (utilisant le
port 53) qui permet d'interroger cette
base. Parfois, « DNS » désigne uniquement le protocole, parfois,
c'est une combinaison des trois éléments indiqués plus haut
(personnellement, quand j'utilise « DNS », cela désigne uniquement
le protocole).
Bon, et ces définitions rigoureuses et qui vont mettre fin aux discussions, ça vient ? Chaque section du RFC correspond à une catégorie particulière. D'abord, en section 2, les noms eux-même, ces fameux noms de domaine :
www.madmoizelle.com
), le
vocabulaire s'en ressent. Par exemple, on va dire que
com
est
« au-dessus de madmoizelle.com
» (vision
arborescente) ou bien
« à la fin de www.madmoizelle.com
» (vision texte).
Notez aussi que la représentation des noms de domaine dans les
paquets IP n'a
rien à voir avec leur représentation texte (par exemple, les
points n'apparaissent pas).ldap.potamochère.fr.
est un FQDN alors que
ldap
tout court ne l'est pas). En toute
rigueur, un FQDN devrait toujours s'écrire avec un point à la
fin (pour représenter la racine) mais ce n'est pas toujours le
cas.www.laquadrature.net
, il y a trois
composants, www
,
laquadrature
et net
.brienne.tarth.got.example
peut être un nom
de machine mais www.&#$%?.example
ne peut
pas l'être. Le terme de « nom de machine » est parfois aussi
utilisé pour parler du premier composant d'un nom de domaine
(brienne
dans brienne.tarth.got.example
).fr
ou
name
sont des TLD. N'utilisez surtout pas le terme erroné
d'« extension ».www.cl.cam.ac.uk
est un sous-domaine de
cl.cam.ac.uk
, qui est un sous-domaine de
cam.ac.uk
et ainsi de suite, jusqu'à la
racine, le seul domaine à n'être sous-domaine de
personne.vader IN CNAME anakin
, l'alias est
vader
(et c'est une erreur de dire que
c'est « le CNAME »).anakin
est le CNAME, le « nom canonique ».com
, co.uk
et
eu.org
sont des
suffixes publics. Rien dans la syntaxe du nom n'indique qu'un
nom de domaine est un suffixe public, puisque ce statut ne
dépend que d'une politique d'enregistrement (qui peut changer).Fini avec les noms, passons à l'en-tête des messages DNS et aux codes qu'il peut contenir. Cet en-tête est défini dans le RFC 1035, section 4.1. Il donne des noms aux champs mais pas forcément aux codes. Ainsi, le code de réponse 3 indiquant qu'un domaine demandé n'existe pas est juste décrit comme name error et n'a reçu son mnémonique de NXDOMAIN (No Such Domain) que plus tard. Notre RFC définit également :
Voici un renvoi depuis la racine vers .fr
:
% dig @l.root-servers.net A blog.imirhil.fr ... ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16572 ;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 5, ADDITIONAL: 11 ... ;; AUTHORITY SECTION: fr. 172800 IN NS d.ext.nic.fr. fr. 172800 IN NS d.nic.fr. fr. 172800 IN NS e.ext.nic.fr. fr. 172800 IN NS f.ext.nic.fr. fr. 172800 IN NS g.ext.nic.fr.
Passons maintenant aux enregistrements DNS, stockés dans cette base de données répartie (section 4 du RFC) :
Voici un ensemble d'enregistrements (RRset), comptant ici deux enregistrements :
rue89.com. 600 IN MX 50 mx2.typhon.net. rue89.com. 600 IN MX 10 mx1.typhon.net.
Et voici un pseudo-enregistrement OPT, tel qu'affiché par dig, avec une indication de la taille maximale et l'option client subnet (RFC pas encore publié) :
;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags: do; udp: 512 ; CLIENT-SUBNET: 13.176.144.0/24/0
Ensuite, un sujet chaud où le vocabulaire est particulièrement peu défini, et très mal utilisé (voir les forums grand public sur le DNS où les discussions prennent un temps fou car les gens utilisent mal les mots) : les différents types de serveurs et clients DNS (section 5) :
getaddrinfo()
ou
getnameinfo()
. Sur
Unix, le résolveur minimum fait en
général partie de la libc et trouve
l'adresse du ou des résolveurs complets dans /etc/resolv.conf
.f.root-servers.net
fait autorité pour la
racine, d.nic.fr
fait autorité pour
pm
, etc. Des logiciels comme
NSD ou
Knot
assurent cette fonction. Les serveurs faisant autorité sont
gérés par divers acteurs, les registres,
les hébergeurs DNS (qui sont souvent en même temps
bureaux d'enregistrement), mais aussi par
M. Michu. La commande dig NS $ZONE
vous
donnera la liste des serveurs faisant autorité pour la zone
$ZONE
.NS .
» à un des serveurs de sa
liste. Ainsi, tant qu'un moins un des serveurs de la vieille
liste répond, le résolveur est sûr d'apprendre la liste actuelle./etc/resolv.conf
le
serveur primaire ») n'a pas de sens.forwarders
).Voici, vu par tcpdump, un exemple d'initialisation d'un résolveur BIND utilisant la racineYeti :
15:07:36.736031 IP6 2a01:e35:8bd9:8bb0:21e:8cff:fe76:29b6.35721 > 2001:6d0:6d06::53.53: \ 21476% [1au] NS? . (28) 15:07:36.801982 IP6 2001:6d0:6d06::53.53 > 2a01:e35:8bd9:8bb0:21e:8cff:fe76:29b6.35721: \ 21476*- 16/0/1 NS yeti-ns.tisf.net., NS yeti-ns.lab.nic.cl., NS yeti-ns.wide.ad.jp., NS yeti.ipv6.ernet.in., NS yeti-ns.as59715.net., NS ns-yeti.bondis.org., NS yeti-dns01.dnsworkshop.org., NS dahu2.yeti.eu.org., NS dahu1.yeti.eu.org., NS yeti-ns.switch.ch., NS bii.dns-lab.net., NS yeti.bofh.priv.at., NS yeti-ns.conit.co., NS yeti.aquaray.com., NS yeti-ns.ix.ru., RRSIG (619)
La question était « NS .
» (quels sont les
serveurs de la racine) et la réponse contenait les noms des seize
serveurs racine.
Voici aussi des exemples de résultats avec un résolveur ou bien avec un serveur faisant autorité. Si je demande à un serveur faisant autorité (ici, un serveur racine), avec mon client DNS qui, par défaut, demande un service récursif (flag RD, Recursion Desired) :
% dig @2001:620:0:ff::29 AAAA www.iab.org ... ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 54197 ;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 9, ADDITIONAL: 13 ;; WARNING: recursion requested but not available ... ;; AUTHORITY SECTION: org. 172800 IN NS b0.org.afilias-nst.org. ...
C'est pour cela que dig affiche WARNING: recursion requested but not available. Notez aussi que le serveur, ne faisant autorité que pour la racine, n'a pas donné la réponse mais juste un renvoi aux serveurs d'Afilias. Maintenant, interrogeons un serveur récursif (le service de résolveur public Yandex DNS) :
% dig @2a02:6b8::feed:0ff AAAA www.iab.org ... ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 63304 ;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0 ... ;; ANSWER SECTION: www.iab.org. 1800 IN AAAA 2001:1900:3001:11::2c
Cette fois, j'ai obtenu une réponse, et avec le
flag RA, Recursion
Available. Si je pose une question sans le
flag RD (Recursion Desired,
avec l'option +norecurse
de dig) :
% dig +norecurse @2a02:6b8::feed:0ff AAAA www.gq.com ... ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59438 ;; flags: qr ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0 ... ;; ANSWER SECTION: www.gq.com. 293 IN CNAME condenast.map.fastly.net.
J'ai obtenu ici une réponse car l'information était déjà dans le cache (la mémoire) de Yandex DNS (on le voit au TTL, qui n'est pas un chiffre rond, il a été décrémenté du temps passé dans le cache). Si l'information n'est pas dans le cache :
% dig +norecurse @2a02:6b8::feed:0ff AAAA blog.keltia.net ... ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19893 ;; flags: qr ra; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0 ...
Je n'obtiens alors pas de réponse (ANSWER: 0). Si je demande au serveur faisant autorité pour cette zone :
% dig +norecurse @2a01:e0d:1:3:58bf:fa61:0:1 AAAA blog.keltia.net ... ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 62908 ;; flags: qr aa; QUERY: 1, ANSWER: 2, AUTHORITY: 6, ADDITIONAL: 15 ... ;; ANSWER SECTION: blog.keltia.net. 86400 IN AAAA 2a01:240:fe5c:1::2 ...
J'ai évidemment une réponse et, comme il s'agit d'un serveur faisant autorité, elle porte le flag AA (Authoritative Answer, qu'un résolveur ne mettrait pas). Notez aussi le TTL qui est un chiffre rond (et qui ne change pas si on rejoue la commande).
Passons maintenant à un concept relativement peu connu, celui de zones, et le vocabulaire associé :
gouv.fr
n'est pas
une zone séparée, il est dans la même zone que
fr
(cela se teste facilement :
gouv.fr
n'a pas d'enregistrement NS ou de
SOA).wikipedia.org
est org
.ns1.mazone.example
, le résolveur
doit passer par les serveurs de
mazone.example
, qui est déléguée à
ns1.mazone.example
et ainsi de suite... On
rompt ce cercle vicieux en ajoutant, dans la zone parente, des
données qui ne font pas autorité sur les adresses de ces
serveurs (RFC 1034, section 4.2.1). Il faut donc bien veiller à les garder synchrones avec
la zone fille. (Tanguy Ortolo me suggère d'utiliser
« enregistrement de raccord » plutôt que « colle ». Cela décrit
bien leur rôle, en effet.)ip6.arpa
ou sous
les domaines très longs de certains CDN.*
dans une zone déclenche la synthèse
automatique de réponses pour les noms qui n'existent pas dans la
zone. Si la zone foo.example
contient
bar.foo.example
et
*.foo.example
, une requête pour
thing.foo.example
renverra le contenu de
l'enregistrement avec le joker, une requête pour
bar.foo.example
donnera les données de bar.foo.example
.
Voyons ici la colle retournée par un serveur faisant autorité (en
l'occurrence un serveur de .net
) :
% dig @a.gtld-servers.net AAAA labs.ripe.net ... ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18272 ;; flags: qr rd; QUERY: 1, ANSWER: 0, AUTHORITY: 8, ADDITIONAL: 9 ... ;; AUTHORITY SECTION: ripe.net. 172800 IN NS ns3.nic.fr. ripe.net. 172800 IN NS sec1.apnic.net. ripe.net. 172800 IN NS sec3.apnic.net. ripe.net. 172800 IN NS tinnie.arin.net. ripe.net. 172800 IN NS sns-pb.isc.org. ripe.net. 172800 IN NS pri.authdns.ripe.net. ... ;; ADDITIONAL SECTION: sec1.apnic.net. 172800 IN AAAA 2001:dc0:2001:a:4608::59 sec1.apnic.net. 172800 IN A 202.12.29.59 sec3.apnic.net. 172800 IN AAAA 2001:dc0:1:0:4777::140 sec3.apnic.net. 172800 IN A 202.12.28.140 tinnie.arin.net. 172800 IN A 199.212.0.53 tinnie.arin.net. 172800 IN AAAA 2001:500:13::c7d4:35 pri.authdns.ripe.net. 172800 IN A 193.0.9.5 pri.authdns.ripe.net. 172800 IN AAAA 2001:67c:e0::5
On notera :
pri.authdns.ripe.net
: ce serveur étant
dans la zone qu'il sert, sans son adresse IP, on ne pourrait
jamais le joindre.sec1.apnic.net
. Ce n'est pas
strictement indispensable (on pourrait l'obtenir par une
nouvelle requête), juste une optimisation.ns3.nic.fr
et
sns-pb.isc.org
ne sont pas renvoyées. Le
serveur ne les connait probablement pas et, de toute façon,
elles seraient hors-bailliage.Voyons maintenant, un ENT,
gouv.fr
:
% dig @d.nic.fr ANY gouv.fr ... ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 42219 ;; flags: qr aa rd; QUERY: 1, ANSWER: 0, AUTHORITY: 2, ADDITIONAL: 1
Le serveur fait bien autorité pour ce domaine (flag AA dans la réponse), le domaine existe (autrement, le status aurait été NXDOMAIN, pas NOERROR) mais il n'y a aucun enregistrement (ANSWER: 0).
Allez courage, ne faiblissons pas, il reste encore la question de l'enregistrement des noms de domaine (section 7) :
bortzmeyer.org
:-)
C'est le registre qui décide de la politique d'enregistrement,
qui peut être très variable selon les zones (sauf dans celles
contrôlées par l'ICANN, où une certaine
uniformité est imposée). Mes lecteurs français noteront que,
comme le terme « registre » est court et largement utilisé, le
gouvernement a inventé un nouveau mot, plus long et jamais vu
auparavant, « office d'enregistrement ».Enfin, pour terminer, la section 8 de notre RFC couvre DNSSEC. Pas grand'chose de nouveau ici, DNSSEC étant plus récent et donc mieux défini.
Je rappelle que ce RFC n'est plus le document final, ce rôle est désormais tenu par son successeur, le RFC 8499.
Version PDF de cette page (mais vous pouvez aussi imprimer depuis votre navigateur, il y a une feuille de style prévue pour cela)
Source XML de cette page (cette page est distribuée sous les termes de la licence GFDL)