Ce blog n'a d'autre prétention que de me permettre de mettre à la disposition de tous des petits textes que j'écris. On y parle surtout d'informatique mais d'autres sujets apparaissent parfois.
Date de publication du RFC : Février 2024
Auteur(s) du RFC : A. Backman (Amazon), J. Richer (Bespoke Engineering), M. Sporny (Digital Bazaar)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF httpbis
Première rédaction de cet article le 17 janvier 2025
Ce RFC spécifie comment on peut signer cryptographiquement et vérifier des messages HTTP, afin de s'assurer de leur authenticité. Des signatures HTTP conceptuellement proches, mais syntaxiquement différentes sont notamment utilisées par le fédivers.
Alors, attention, vous allez me dire « mais tout le monde utilise HTTPS, de toute façon » mais ce n'est pas tout à fait la même chose. Comme l'explique la section 1 de notre RFC, TLS protège une connexion mais ne fonctionne pas de bout en bout, s'il y a sur le trajet des relais qui terminent une session TLS et ouvrent une autre connexion (la section 7.1.2 détaille les limites de TLS pour les scénarios envisagés). Et TLS ne permet pas d'authentifier le client, sauf à utiliser des certificats client, que beaucoup trouvent peu pratique, et qui dépendent d'un système centralisé, les AC. En prime, dans un contexte d'utilisation serveur-serveur, comme dans le fédivers, on n'a pas envie de confier sa clé privée à son serveur. Donc, il y a un besoin pour une signature des messages (TLS n'est pas inutile pour autant, il fournit notamment la confidentialité, cf. section 8.2 de notre RFC). Voilà pourquoi Mastodon, par exemple, a commencé à utilisé des signatures HTTP pour la sécurité. Le format ActivityPub ne prévoyait en effet aucune sécurité, d'où la nécessité de développer des techniques ad hoc. Mais notez que la technique de Mastodon, non normalisée et même pas spécifiée quelque part, sauf dans le code source, n'est pas compatible avec celle du RFC. Un travail est en cours pour documenter cela.
Notons qu'il existe aussi des solutions pour signer le corps d'un message HTTP, comme JWS (RFC 7515) si le corps est en JSON (RFC 8259). Mais les signatures HTTP de notre RFC 9421 protègent non seulement le corps (quel que soit son format) mais aussi une partie des champs de l'en-tête. Il n'y a pas de solution générale de protection des contenus en HTTP, juste une protection du canal de communication, avec HTTPS.
Donc, le principe est simple : le signeur canonicalise certains champs de l'en-tête (et, indirectement, le corps, via la condensation du RFC 9530), les signe et met la signature dans l'en-tête. Par exemple, avec ce message HTTP (une simple demande de lecture, qui n'a donc probablement pas besoin d'être authentifiée mais c'est juste un exemple) :
GET /9421.html HTTP/1.1 Host: www.bortzmeyer.org Date: Fri, 17 Jan 2025 10:53:17 +0100 Content-Type: text/plain Content-Digest: sha-256=:591b6607e9e257e26808e2ccf3984c23a5742b78defad9ec7b2966ddcef29909=: Hello, HTTP
La signature ajoutera ces deux champs :
Signature-Input: sig=("date" "host";sf "content-type";sf "content-digest" "@method" "@target-uri" "@authority" "@scheme" "@request-target" "@path" "@query");alg="ecdsa-p256-sha256" Signature: sig=:0dnCVeCDOJ9fQiLqUXLE8hwBDNpAVlO3TJZgqm/FBJ1x2h5/g5qU20UM87BkJt0iK9vpRRgPF9fmWobf6Y5iYQ==:
(« sig » est un identificateur arbitraire, qui sert à faire la correspondance entre une signature et ses paramètres, dans le cas où il y a plusieurs signatures.) Le vérificateur devra récupérer la clé publique (notez que le RFC ne précise pas comment : chaque application utilisant les signatures HTTP devra décrire sa méthode de récupération des clés), canonicaliser et refaire les calculs cryptographiques, validant (ou non) la signature.
Voilà, vous connaissez l'essentiel du RFC, maintenant, place aux
détails. D'abord, un peu de terminologie : en dépit de leur nom, les
signatures HTTP peuvent être aussi bien de « vraies » signatures, faites avec de la
cryptographie asymétrique que des
MAC incluant une clé secrète (avec de la
cryptographie symétrique, donc). Ensuite,
relisez bien le RFC 9651 : les champs
structurés dans l'en-tête sont un cas particulier, en raison de la
canonicalisation qu'ils vont subir. (Vous
avez remarqué le sf
dans le champ
Signature-Input:
plus haut ? Il veut dire
Structured Field et indique un traitement
particulier.)
Ensuite, la question évidemment compliquée de la
canonicalisation. HTTP permet et même parfois impose des
transformations du message faites par des intermédiaires (la section
1.3 donne une liste partielle des transformations possibles). Il est
très difficile, voire impossible, de définir quels champs de
l'en-tête vont être respectés et lesquels vont être modifiés. Il n'y
a donc pas de liste officielle des champs à signer, chaque
application va indiquer les siens. Dans l'exemple ci-dessus, on
signe les quatre champs présents, et on l'indique dans le
Signature-Input:
. Si un intermédiaire ajoute un
champ quelconque (par exemple le Forwarded:
du
RFC 7239), la signature restera valide. Le
récepteur ne devra donc pas considérer ce champ comme
authentifié. Même chose pour le corps si on ne signe pas son
condensat (RFC 9530). La section 7.2.8 du RFC
rappelle l'importance de signer le corps, pour la plupart des
cas. Notez également que le Signature-Input:
plus haut incluait aussi des composants qui ne sont pas des champs
de l'en-tête mais qu'on veut signer, comme la méthode (GET
) ou
les composants de l'URL. Leur nom est précédé d'un arobase.
Autre problème du monde réel : les programmes n'ont pas un contrôle complet du message HTTP produit. Par exemple, le programme va utiliser une bibliothèque qui va formater les champs à sa manière, en ajouter, etc. C'est pour cela qu'il est important de laisser ouverte la question de la liste des champs à signer. Chaque application choisira.
Les signatures HTTP ne sont pas une solution complète prête à l'emploi : bien des points sont délibérement laissés vides dans le RFC. Une solution complète de sécurité doit donc spécifier :
Date:
soit présent et signé, pour détecter
les messages trop anciens que quelqu'un essaierait de rejouer,
cf. la section 7.2.2),Les noms des composants signés (champs de l'en-tête et autres)
sont décrits dans la section 2 de notre RFC. Pour un champ, c'est
simplement son nom en minuscules (comme "date"
dans le Signature-Input:
plus haut). Autrement,
les noms commencent par un arobase par exemple
@method
indique la méthode HTTP
utilisée. Les méthodes de canonicalisation (complexes, surtout pour
les champs structurés !) sont dans la même section.
Les différents paramètres de la signature, comme un
identificateur pour la clé utilisée, ou comme la date de signature,
peuvent également être inclus dans le
Signature-Input:
.
Tous ces paramètres forment ce qu'on appelle la base (section 2.5). Celle du message donné comme exemple plus haut est :
"date": Fri, 17 Jan 2025 10:53:17 +0100 "host";sf: www.bortzmeyer.org "content-type";sf: text/plain "content-digest": sha-256=:591b6607e9e257e26808e2ccf3984c23a5742b78defad9ec7b2966ddcef29909=: "@method": GET "@target-uri": https://www.bortzmeyer.org/9421.html "@authority": www.bortzmeyer.org "@scheme": https "@request-target": /9421.html "@path": /9421.html "@query": ? "@signature-params": ("date" "host";sf "content-type";sf "content-digest" "@method" "@target-uri" "@authority" "@scheme" "@request-target" "@path" "@query");alg="ecdsa-p256-sha256"
Ici, elle est relativement courte, la plupart des métadonnées n'étant pas mentionnée.
Une fois la signature générée, le signeur ajoute deux champs à l'en-tête (section 4 du RFC) :
Signature-Input:
qui indique les
paramètres de la signature (liste des champs signés, et
optionnellement métadonnées sur la signature),Signature:
, qui contient la
signature elle-même.
Les deux champs sont structurés selon la syntaxe du RFC 9651. (Notez que ces deux champs sont une des différences
avec l'ancienne version des signatures HTTP, utilisée dans le
fédivers. Cette ancienne version n'avait qu'un champ,
Signature:
. Un vérificateur qui veut gérer les
deux versions peut donc utiliser la présence du champ
Signature-Input:
comme indication que la
version utilisée est celle du RFC. L'annexe A expose cette
heuristique, qui figure également dans le
projet d'intégration avec ActivityPub.)
Voici un exemple de signature avec des métadonnées (date de signature et identifiant de la clé :
Signature-Input: reqres=("@status" "content-digest" "content-type" \ "@authority";req "@method";req "@path";req "content-digest";req)\ ;created=1618884479;keyid="test-key-ecc-p256" Signature: reqres=:dMT/A/76ehrdBTD/2Xx8QuKV6FoyzEP/I9hdzKN8LQJLNgzU\ 4W767HK05rx1i8meNQQgQPgQp8wq2ive3tV5Ag==:
Notez que notre RFC décrit aussi une méthode pour demander qu'un
correspondant signe ses messages : inclure un champ
Accept-Signature:
(section 5 du RFC).
Les signatures HTTP nécessitent la modification ou la création de plusieurs registres IANA :
Accept-Signature:
,
Signature:
et Signature-Input:
ont été ajoutés au registre des champs
d'en-tête HTTP.ecdsa-p256-sha256
, que j'ai
utilisé dans mon exemple (algorithme
ECDSA). On peut y ajouter des algorithmes
via la politique « Spécification nécessaire » du RFC 8126. created
(la date de signature) ou
keyid
(l'identificateur de la clé, selon un
schéma de nommage spécifique à l'application). On peut y ajouter des valeurs
via la politique « Examen par un expert » du RFC 8126.@method
.
On peut y ajouter des noms
via la politique « Examen par un expert » du RFC 8126.sf
, par exemple, qui
indique qu'un champ de l'en-tête est un champ structuré et doit
donc être traité de manière spéciale.
On peut y ajouter des noms
via la politique « Examen par un expert » du RFC 8126.Si vous voulez un article d'introduction :
Questions mises en œuvre, on dispose désormais de bibliothèques pour de nombreux langages de programmation (je ne les ai pas testées) :
https://github.com/superseriousbusiness/httpsig
,https://imrannazar.com/articles/http-signatures-in-php
,https://docs.rs/crate/http-signatures/latest
,https://pypi.org/project/http-message-signatures/
.
Une discussion est en
cours pour ajouter ces signatures à
curl.
Si vous programmez, pour tester votre code, je recommande fortement le service en ligne
.
Notez qu'il ne vérifie pas
le condensat du corps du message. Pour fabriquer les clés
pour ce service, si
vous voulez faire de l'ECDSA, vous pouvez
utiliser les commandes OpenSSL suivantes
(oui, il doit y avoir une version plus simplm) :
https://httpsig.org/
openssl ecparam -out server.pem -name prime256v1 -genkey openssl req -new -key server.pem -nodes -days 1000 -out server.csr openssl x509 -in server.csr -out server.crt -req -signkey server.pem -days 2001
La clé privée sera dans server.pem
et la
publique dans server.crt
.
Concernant l'ancienne version des signatures HTTP, vous pouvez consulter :
https://blog.joinmastodon.org/2018/06/how-to-implement-a-basic-activitypub-server/
et https://blog.joinmastodon.org/2018/07/how-to-make-friends-and-verify-requests/
.Mobilizon.Federation.HTTPSignatures.Signature
et il vient à l'origine de Pleroma.Cette technique des signatures HTTP a eu une histoire longue et
compliquée. Née chez Amazon, elle avait d'abord été
décrite dans un Internet draft, draft-cavage-http-signatures
en 2013, et déployée, notamment dans le secteur financier. En 2017,
Mastodon avait utilisé la technique telle que décrite dans ce
document (forçant le reste du fédivers à s'aligner sur « ce que fait
Mastodon »). C'est après l'adoption par le groupe de travail
httpbis que le projet avait pris sa forme finale. (Regardez
les
supports de présentation à l'IETF en 2019 et la vidéo de la
réunion.) L'auteur du projet initial avait écrit un
bon résumé en 2020, décrivant de l'intérieur comment se passe
la normalisation dans l'Internet. Les différences principales avec ce que fait le fédivers :
Signature-Input:
et
Signature:
,Date de publication du RFC : Juillet 2022
Auteur(s) du RFC : D. Eastlake 3rd (Futurewei Technologies)
Chemin des normes
Première rédaction de cet article le 14 janvier 2025
Il existe tout un ensemble de normes pour assurer la sécurité de documents XML, par exemple les protéger contre la lecture non autorisée, ou bien permettre leur authentification. Ces normes dépendent d'algorithmes cryptographiques identifiés par un URI. Ce RFC met à jour la liste précédente de ces URI (qui était dans le RFC 6931) avec les nouveaux algorithmes et corrige quelques erreurs du précédent RFC.
Ces normes de sécurité de XML étaient à l'origine un travail conjoint de l'IETF et du W3C. C'était par exemple le cas des signatures XML du RFC 3275, du XML canonique des RFC 3076 ou RFC 3741. Elles sont désormais maintenues par le W3C qui a produit des versions plus récentes (par exemple pour les signatures XML, le XML canonique ou le chiffrement XML).
Dans un monde dynamique comme celui de la
cryptographie, où les progrès de la
cryptanalyse nécessitent des changements
d'algorithmes, les normes ne sont pas liées à un algorithme
particulier. Elles permettent l'agilité cryptographique (le
changement d'algorithme) et il faut donc pouvoir indiquer quel
algorithme est utilisé pour signer ou chiffrer un document
donné. Pour une norme W3C, on ne s'étonnera pas que l'indication
se fait par le biais d'un URI (RFC 3986). Les
nouveaux algorithmes commencent désormais par le préfixe
http://www.w3.org/2021/04/xmldsig-more#
(les
anciens algorithmes pouvant avoir d'autres préfixes). Ces nouveaux
algorithmes (avec 2021/04
dans leur
identificateur) sont relativement rares dans ce RFC : on n'invente
quand même pas un bon algorithme de cryptographie tous les jours et
la plupart des exemples dans cet article utilisent donc le vieux
préfixe. Un exemple récent ? EdDSA (RFC 8032) a l'URI
http://www.w3.org/2021/04/xmldsig-more#eddsa-ed25519
. Rappelez-vous
qu'il s'agit d'URI, pas forcément d'URL et que vous
n'obtiendrez donc pas forcément un résultat en pointant votre
navigateur Web vers
http://www.w3.org/2001/04/xmlenc#sha256
(cf. section 5.1).
Notons que notre RFC 9231 ne prend pas position sur la qualité cryptographique des algorithmes : il fournit un moyen de les désigner sans ambiguïté, c'est tout. Si on veut étudier cette qualité cryptographique, il faut lire d'autres documents (comme le RFC 6194 pour SHA-1).
Un exemple d'un ancien algorithme est
SHA-1 pour calculer les condensats
cryptographiques. Son URI est
http://www.w3.org/2000/09/xmldsig#sha1
. Sa
sécurité est aujourd'hui sérieusement battue en brèche (cf. RFC 6194). Autre exemple d'un algorithme qui était
déjà dans le RFC 6931, SHA-512,
identifié par http://www.w3.org/2001/04/xmlenc#sha512
.
Il existe aussi des identificateurs pour les MAC combinés
avec une condensation, par exemple
http://www.w3.org/2001/04/xmldsig-more#hmac-sha512
(RFC 6234).
Et pour les signatures avec un système à clé publique ?
L'identificateur indique l'algorithme de cryptographie asymétrique
et celui de condensation, par exemple
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
(voir aussi le RFC 3447). Si on trouve RSA ennuyeux, il existe
aussi des identificateurs pour un algorithme à courbes
elliptiques (RFC 6090 mais notez
ses
errata), ECDSA, par exemple
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
.
Enfin, il y a les algorithmes de chiffrement symétrique. Par exemple,
Camellia (RFC 3713) sera identifié par
http://www.w3.org/2001/04/xmldsig-more#camellia256-cbc
. Le
plus récent SEED (RFC 4269) sera
http://www.w3.org/2007/05/xmldsig-more#seed128-cbc
.
Un exemple d'utilisation donné par notre RFC, pour de la cryptographie symétrique :
<EncryptionMethod Algorithm="http://www.w3.org/2021/04/xmldsig-more#chacha20"> <Nonce>0123456789abcdef01234567</Nonce> <Counter>fedcba09</Counter> </EncryptionMethod>
Voici pour la cryptographie. Mais les normes de sécurité XML
prévoient aussi une étape de canonicalisation avant chiffrement ou
signature, et là aussi, il y a plusieurs algorithmes, identifiés par
des URI comme
http://www.w3.org/2000/09/xmldsig#minimal
ou
http://www.w3.org/2006/12/xmlc14n11#WithComments
.
Quelle est la politique d'allocation dans le registre ? La
section 5 décrit celle du W3C (le préfixe
http://www.w3.org/2007/05/xmldsig-more#
est
figé, a priori, on n'y mettra pas de nouveaux algorithmes) et celle
de l'IETF : comme il est facile d'obtenir un URI (n'importe qui peut
en créer un), la seule question est celle de leur enregistrement. Il
se fera après un examen par un expert (voir le RFC 8126 pour les politiques d'allocation IETF) après
publication d'un texte décrivant le nouvel algorithme.
Quels changements depuis la version précédente de ce RFC, le RFC 6931 ? L'annexe A les liste. Les principaux, à mon avis, sont :
First publication of this article on 11 January 2025
If you use the fediverse, you know that
the main bot-hosting instance,
botsin.space
, closed recently. I document here
one or two things about the new hosting of two bots I maintain, one
answering BGP
requests and one for DNS information.
These two bots are documented in the
articles "A Fediverse/Mastodon bot for
DNS" and "A
Fediverse/Mastodon bot for BGP queries". They were hosted on
a dedicated-for-bots instance,
botsin.space
. This one is now
closed so I had to move elsewhere.
This proved to be surprisingly difficult. Many instances no longer accept new inscriptions, or are subject to a (sometimes long) process of registration. Some have policies against bots (or mention they are just "tolerated", something I did not want) or against the use of some specific vocabulary (and I did not want the DNS bot to filter words used in domain names).
But there were also technical issues. Some instances never hosted
a bot (more specifically a read-write bot, which will need the
ability to read notifications; many bots are write-only) and
therefore have surprising issues (one accepted the connections but
never sent the heartbeats that the Mastodon API uses to
check liveness, another replied with 404 to all requests of the
streaming API). And I had no experience with debugging
these issues (but now I do). In the end, while I would have
prefer to try another instance, I used the instance where my main
acount is hosted, mastodon.gougere.fr
.
As usual on the fediverse, no instance is perfect
(botsin.space
was blocking a big instance,
mamot.fr
, for instance) but at least this time
it works. You can now resume sending DNS and BGP queries.
Thanks to the people who maintain instances (it is often an unrewarding task) and let's toot.
Auteur(s) du livre : Rémi Boulle
Éditeur : Dunod
978-2-10-087133-9
Publié en 2024
Première rédaction de cet article le 26 décembre 2024
Vous le savez tous et toutes, la cryptographie est une composante essentielle de la sécurité de l'Internet. Si tout le monde ne va pas devenir expert·e en cryptographie, en revanche, il est utile de connaitre les principes de base. Ce livre, destiné à des étudiant·es plutôt qu'au grand public, est une approche très concrète de la cryptographie, avec des exemples pratiques. J'ai beaucoup apprécié cette approche terre-à-terre.
Le livre commence par rappeler l'enjeu de la cryptographie, indispensable pour protéger l'utilisateurice de l'Internet des nombreuses activités de surveillance qui s'exercent contre lui ou elle. Les révélations d'Edward Snowden, par exemple, ont montré que la surveillance massive par les États est une réalité. La cryptographie soulève de nombreuses questions politiques, ce livre les mentionne mais parle surtout de technique.
Vous aurez en effet ensuite une explication des principes de la cryptographie, puis des différents algorithmes. Il faudra accepter un peu de mathématique, mais c'est nécessaire dans ce domaine.
Pour les exemples de code, le livre utilise Python, et commence par une
introduction (ou un rappel) de ce langage, si vous ne le connaissez
pas bien. Il dépend ensuite de plusieurs bibliothèques qu'il
présente, dont cryptography
et,
comme le titre l'indique, OpenSSL. La
cryptographie nécessite des opérations de bas niveau, comme des
décalages de bits mais ne vous inquiétez pas, tout cela est
rappelé.
On commence par un exemple trivial et d'intérêt purement historique, l'algorithme de César :
import sys KEY=3 def chiffre_Cesar_texte(texte_clair, k): texte_chiffre = "" for lettre in texte_clair: code_lettre = ord(lettre)-65 chiffre = (code_lettre + k) % 26 lettre_chiffre = chr(chiffre + 65) texte_chiffre = texte_chiffre + lettre_chiffre return texte_chiffre for texte in sys.argv[1:]: print(chiffre_Cesar_texte(texte, KEY))
Mais vous aurez d'innombrables exemples de codes plus sérieux, utilisant des services réels, par exemple récupérer des données sur la chaine de blocs Bitcoin, l'analyser, la vérifier et même faire du minage de bitcoins. Même un·e connaisseur·se en cryptographie y découvrira certainement quelque chose, par exemple qu'il existe une courbe elliptique souveraine en France.
Conçu comme livre de classe, il contient de nombreux exercices. Si vous voulez récupérer l'intégralité des exemples et des solutions, allez sur le site officiel (on vous demande votre adresse de courrier mais mettez n'importe quoi, ça marche).
Le livre ne se contente pas de généralités sur la cryptographie mais explique aussi les détails de certains protocoles de communication sécurisés, très utilisés sur l'Internet, comme HTTPS et SSH, ou bien dans le contexte de l'Internet des objets, comme LoRaWAN, avec décorticage de paquets. Bref, si vous êtes prêt à vous plonger dans la cryptographie, voici un excellent guide.
La photo du livre, ci-dessous, contient une autre image, cachée. Lisez le chapitre sur la stéganographie et vous pourrez récupérer cette image cachée (les quatre bits de poids faible contiennent les bits de poids fort de l'image cachée, cf. section 4.5.2, p. 43 et 44).
Première rédaction de cet article le 22 décembre 2024
Si vous êtes en vacances dans les prochains jours, cela peut être l'occasion de lire des articles scientifiques riches. Par exemple, si vous voulez en apprendre davantage sur la robustesse des connexions Internet face aux coupures de câbles, regardez le cas du Pakistan dans cet article (en anglais).
Régulièrement, la question de la vulnérabilité des câbles qui forment l'infrastructure physique de l'Internet est posée. Souvent, elle est traitée de manière sensationnaliste (« les russechinoicoréeniraniens vont couper notre Internet, on ne pourra plus voir Netflix »), par exemple par des politiciens qui veulent jouer au chef de temps de guerre. Si on veut traiter le sujet plus sérieusement, il faut analyser en détail, et ça prend davantage de temps que de faire un titre putaclic. C'est ce que font Nowmay Opalinski, Zartash Uzmi et Frédérick Douzet pour le cas du Pakistan. Leur article « The Quest for a Resilient Internet Access in a Constrained Geopolitical Environment » étudie en détail la connectivité d'un pays. Combien de câbles vers l'extérieur ? Par où passent-ils ? (Je vous laisse lire l'article pour voir leur méthodologie, mais notez qu'il ne suffit pas d'étudier l'infrastructure physique, leur article décortique aussi l'infrastructure logicielle.) Cela donne une bonne idée de la robustesse de la connectivité d'un pays, de ses chances de résister à des coupures de câble, qu'elles soient volontaires ou accidentelles (et je rappelle qu'il y a davantage de maladroits que de malveillants).
Si vous regardez la carte, vous pouvez vous dire que le Pakistan n'a pas trop besoin de câbles sous-marins, il peut passer par des connexions terrestres avec ses voisins. Mais la question n'est évidemment pas purement technique, il faut prendre en question la géopolitique. Pas question de passer par l'Inde, par exemple. Et, avec l'Iran, ce n'est pas beaucoup mieux. Il reste l'Afghanistan… Et il y a même un lien avec la Chine, avec qui les relations sont bien plus cordiales, mais, ici, c'est la géographie qui n'est pas d'accord (le câble, dont l'utilisation n'est pas claire, passe par un col difficile).
Bref, les connexions internationales du Pakistan passent pour l'essentiel par des liaisons sous-marines depuis Karachi, vers des pays plus lointains. Une panne dans cette région met donc en péril toute la connectivité extérieure du pays.
Ce ne serait pas trop grave si les Pakistanais·es pouvaient encore dialoguer entre ielles. Mais, comme dans beaucoup de pays, les communications, même locales, sont souvent médiées par les GAFA. Et ceux-ci n'ont souvent pas d'infrastructure dans le pays, suggérant parfois de passer par l'Inde, ce qui est évidemment irréaliste vu les relations entre les deux pays. Une coupure des liens avec l'extérieur pourrait donc avoir de sérieuses conséquences. Si on utilisait davantage les liaisons pair-à-pair et l'auto-hébergement, il y aurait davantage de robustesse.
Un exemple (j'ai pris le DNS parce que c'est ce que je connais mais lisez l'article, il y aura d'autres exemples), l'instance de Google Public DNS qu'on peut joindre depuis le Pakistan, vue par les sondes RIPE Atlas, est aux Émirats, de l'autre côté du golfe :
% blaeu-resolve --requested 100 --country PK --nameserver 8.8.8.8 \ --nsid --type A lums.edu.pk Nameserver 8.8.8.8 [110.93.234.24 111.68.103.174 203.135.62.24 NSID: gpdns-fjr;] : 3 occurrences Test #85285321 done at 2024-12-22T13:48:31Z
(Voir mon autre article sur l'utilisation des sondes Atlas. Regardez le NSID - RFC 5001 de l'instance, qui pointe vers les EAU.)
En parlant d'histoire-géographie, notez aussi que l'article met en évidence que les liaisons intérieures du pays sont très concentrées dans la vallée de l'Indus. La technologie moderne utilise la même voie de communication qu'il y a cinq mille ans.
Quelques autres références :
Date de publication du RFC : Décembre 2024
Auteur(s) du RFC : M.Q.C. van
Beurden, A. Weaver
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF cellar
Première rédaction de cet article le 19 décembre 2024
Le format FLAC, normalisé dans ce RFC, permet de stocker et de transmettre du son sans perte (contrairement à des mécanismes de compression comme MP3). Il est donc utile, par exemple pour l'archivage à long terme (mais aussi pour la haute fidélité).
Le multimédia, c'est compliqué. Le RFC fait près de 100 pages, pour un format audio qui se veut pourtant simple. FLAC fait de la compression pour limiter l'espace de stockage nécessaire mais en prenant soin de permettre une décompression qui redonne exactement le fichier originel (d'où le « sans perte » dans son nom, qu'il partage avec d'autres formats, comme le FFV1 du RFC 9043). Je ne connais pas assez le domaine de l'audio pour faire un résumé intelligent du RFC donc je vous invite à le lire si vous voulez comprendre comment FLAC fonctionne (les sections 4 à 6 vous font une description de haut niveau).
Si on prend un fichier FLAC, un programme comme file peut le comprendre :
% file Thélème.flac Thélème.flac: FLAC audio bitstream data, 24 bit, stereo, 44.1 kHz, length unknown
Le fait que l'échantillonage soit à 44,1 kHz est encodé dans les métadonnées (cf. section 9.1.2 du RFC), que file a pu lire (section 9.1.3 pour le fait que le fichier soit en stéréo).
Il y a quelques fichiers FLAC sur Wikimedia Commons. Mais un bon exemple de l'utilisation de FLAC est donné par l'enregistrement des Variations Goldberg par Kimiko Ishizaka, que vous pouvez télécharger en FLAC et sous une licence libre (CC0).
La mise en œuvre de référence de FLAC est en logiciel libre et se nomme libFLAC. Mais il existe beaucoup d'autres programmes qui savent gérer FLAC (j'ai écouté plusieurs fichiers FLAC avec vlc pour cet article), le lire, l'écrire, l'analyser, etc. Une liste est disponible sur le site du groupe de travail IETF. Il faut dire que FLAC, bien qu'il vienne seulement d'être normalisé, est un format ancien, dont le développement a commencé en 2000, et il n'est donc pas étonnant que les programmeur·ses aient eu le temps de travailler.
Si vous voulez ajouter du code à cette liste, lisez bien la section 11 du RFC, sur la sécurité. Un programme qui lit du FLAC doit être paranoïaque (comme avec n'importe quel autre format, bien sûr) et se méfier des cas pathologiques. Ainsi, le RFC note qu'on peut facilement créer un fichier FLAC de 49 octets qui, décomprimé, ferait 2 mégaoctets, ce qui pourrait dépasser la mémoire qui avait été réservée. Ce genre de surprises peut arriver à plusieurs endroits. L'annexe D du RFC contient plusieurs fichiers FLAC intéressants (et vous pouvez les retrouver en ligne) et il existe également une collection de fichiers FLAC, dont certains sont délibérément anormaux, pour que vous puissiez tester la robustesse de votre programme. Autre piège (mais lisez toute la section 11, il y en a beaucoup), FLAC permet de mettre des URL dans les fichiers, URL qu'il ne faut évidemment pas déréférencer bêtement.
Ce RFC est également la documentation pour l'enregistrement
du type MIME audio/flac
(section 12.1).
Pour une analyse technique de la prétention « sans perte » de FLAC, voir cet article de Guillaume Seznec.
Date de publication du RFC : Octobre 2022
Auteur(s) du RFC : D. Farinacci (lispers.net), V. Fuller (vaf.net Internet Consulting), D. Meyer (1-4-5.net), D. Lewis (Cisco Systems), A. Cabellos (UPC/BarcelonaTech)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF lisp
Première rédaction de cet article le 14 décembre 2024
Le protocole LISP (qui n'a rien à voir avec le langage de programmation du même nom), vise à résoudre un problème documenté dans le RFC 4984 : les difficultés que rencontre le système de routage de l'Internet devant les pressions imposées par la croissance du réseau et par le désir des utilisateurs de ne pas être lié à un unique fournisseur d'accès. Actuellement, tout changement de routage sur n'importe quel site se propage à tous les autres routeurs de la DFZ. Un tel système ne passe pas réellement à l'échelle (il ne peut pas croitre indéfiniment). LISP propose une solution, dans un ensemble de RFC dont ce RFC 9300 (qui succède au RFC 6830) est le principal. LISP n'est désormais plus considéré comme expérimental et ce nouveau RFC est sur le chemin des normes (Standards Track) mais, en pratique, le projet LISP semble plutôt en panne.
Avant de plonger dans ce RFC, voyons les motivations pour LISP et ses principes essentiels (si vous préférez les lire dans le RFC et pas dans mon article, c'est en section 4 mais la lecture recommandée est le RFC 9299). Aujourd'hui, les adresses IP ont deux rôles, localisation (où suis-je connecté au réseau) et identité (qui suis-je). Une adresse IP est un localisateur car changer de point d'attachement (par exemple parce qu'on change de FAI) vous fait changer d'adresse IP, et c'est un identificateur car c'est ce qui est utilisé par les protocoles de transport comme TCP pour identifier une session en cours : changer d'adresse IP casse les connexions existantes.
Le principal problème de cette approche concerne le routage. Un routage efficace nécessiterait une cohérence entre les adresses et la topologie du réseau, par exemple que deux sites proches sur le réseau aient des adresses proches. Mais on n'a pas cette cohérence actuellement. On notera qu'IPv6 ne résolvait pas ce problème, et délibérément (le cahier des charges d'IPv6 ne prévoyait pas de changer le modèle de routage).
Résultat, les routeurs doivent gérer bien plus de routes que nécessaire, augmentant leur prix (en attendant le jour où, même en payant, on n'arrivera pas à manipuler autant de routes, avec leurs changements fréquents). Le RFC 4984 insistait sur ce problème en affirmant que « The workshop participants believe that routing scalability is the most important problem facing the Internet today and must be solved, although the time frame in which these problems need solutions was not directly specified. »
Cette croissance de la table de routage peut être suivie sur le célèbre site de Geoff Huston. Notez que la taille n'est pas le seul aspect, le rythme de changement (le nombre d'updates BGP par seconde) est au moins aussi important.
LISP vise donc à résoudre ce problème par une technique connue sous le nom de séparation du localisateur et de l'identificateur (son nom, « Locator/ID Separation Protocol », en dérive d'ailleurs, bien qu'il soit loin d'être le seul protocole dans cette catégorie). Au lieu que tous les préfixes IP aillent dans la DFZ, seuls les localisateurs, les RLOC (Routing LOCators) y iront. Les identificateurs, les EID (Endpoint IDentifiers) sont dans un nouveau système, le système de correspondance (mapping, RFC 9301), qui permettra de trouver un RLOC à partir d'un EID. LISP est donc l'application d'un vieux principe de l'informatique : « Tout problème peut être résolu en ajoutant un niveau d'indirection. »
À quoi ressemblent RLOC et EID ? Physiquement, ce sont juste des adresses IP (v4 ou v6), avec une nouvelle sémantique. Le RFC 8060 décrit plus en détail comment représenter les EID.
Par rapport aux autres solutions de séparation de l'identificateur et du localisateur (la plus achevée étant HIP), LISP s'identifie par les points suivants :
Comment se passe l'envoi d'un paquet avec LISP ? Supposons qu'une machine
veuille écrire à www.example.com
. Elle utilise
le DNS comme
aujourd'hui, pour trouver que l'adresse est
2001:db8:110:2::e9
(c'est un EID, un
identificateur, mais la machine n'a pas besoin de le savoir, les
machines terminales ne connaissent pas LISP et ne savent même pas
qu'elles l'utilisent). Elle envoie le paquet à son routeur
habituel. À un moment dans le réseau, le paquet va arriver dans un
routeur LISP (qui, lui, a été modifié pour gérer LISP). Il va alors
chercher le RLOC (le localisateur). Il demande au système de
correspondance (l'équivalent LISP du DNS) qui va lui dire « le RLOC de
2001:db8:110:2::e9
est
198.51.100.178
» (notez au passage que RLOC et
EID peuvent être des adresses v4 ou v6). (L'information est stockée
dans un cache du
routeur, pour le prochain paquet.) Le paquet est alors encapsulé dans un paquet
LISP qui est transmis en UDP (port 4341) à
198.51.100.178
. (En raison de ces deux étapes,
correspondance puis encapsulation, LISP fait partie des protocoles
nommés Map and Encap.)
198.51.100.178
décapsule et le paquet suit
ensuite un chemin normal vers la machine
2001:db8:110:2::e9
. Pendant le trajet dans le
tunnel,
le paquet aura donc deux en-têtes, l'interne
(celui placé par la machine d'origine et qui utilise des EID dans
les champs « Adresse IP source » et « Adresse IP destination ») et
l'externe (celui placé par le routeur d'entrée du tunnel, et qui
utilise des RLOC).
Si le système de correspondance avait répondu négativement « Ce
n'est pas un EID, je n'ai pas de RLOC pour
2001:db8:110:2::e9
» (Negative map
reply) ? Cela aurait voulu dire que le site cible
n'utilise pas LISP et, dans ce cas, on lui transmet le paquet par
les mécanismes habituels d'IP.
Ainsi, pour prendre le scénario d'usage principal de LISP, un site qui veut être multi-homé n'aura pas besoin de BGP et d'annoncer ses routes dans la DFZ. Il aura ses identificateurs, ses EID, et les paquets entrant ou sortant de son réseau seront encapsulés en LISP (le système de correspondance peut renvoyer plusieurs RLOC pour un EID, avec des préférences différentes, pour faire de l'ingénierie de trafic). Pour les routeurs de la DFZ, ce seront juste des paquets IP ordinaires. Seules les deux extrémités du tunnel sauront que LISP est utilisé.
Le système de correspondance de LISP n'est pas unique : plusieurs choix sont possibles comme ALT (RFC 6836). Comme le DNS, il fonctionne en tirant les informations nécessaires (pas en les poussant vers tout le monde, comme le fait BGP), ce qui devrait lui donner une bonne capacité de croissance. De toute façon, LISP spécifie une interface vers le système de correspondance (RFC 9301) et les différents systèmes ont juste à mettre en œuvre cette interface pour qu'on puisse en changer facilement. Ainsi, ALT pourra être remplacé par un de ses concurrents, CONS, EMACS ou NERD (leurs noms sont des références au langage de programmation). NERD est documenté dans le RFC 6837.
Ce RFC est un gros morceau (d'autant plus que d'autres parties de LISP sont dans d'autres RFC). Je ne vais pas le couvrir en entier. Mais quelques points méritent d'être gardés en tête :
Pour les fanas de format de paquets, la section 5 décrit l'encapsulation. LISP est indépendant de la famille d'adresses, donc on peut avoir un paquet IP où les EID sont IPv4 qui soit tunnelé avec des RLOC IPv6 ou bien le contraire. Devant le paquet normal, LISP va ajouter un en-tête IP standard pour les RLOC, où la source sera l'ITR (routeur d'entrée du tunnel) et la destination l'ETR (routeur de sortie du tunnel), puis un en-tête UDP (l'UDP a davantage de chances de passer les middleboxes que de l'IP mis directement dans l'IP, des protocoles comme QUIC ont le même problème), avec le port de destination à 4341, puis un en-tête spécifique à LISP et enfin le paquet original. Donc, pour résumer :
L'en-tête spécifique à LISP contient notamment (section 5 si vous voulez tout connaître) :
Comme toutes les solutions à base de tunnel, LISP va souffrir de la mauvaise gestion de la PMTUD dans l'Internet d'aujourd'hui (cf. RFC 4459), l'en-tête LISP supplémentaire réduisant la MTU (cf. section 7 pour des solutions possibles).
La section 5 décrivait les paquets de données, ceux encapsulant les données envoyées par le site original. La section 6 couvre les paquets de contrôle, utilisés par LISP pour ses propres besoins, notamment le système de correspondance (cf. RFC 9301 pour les détails). On y retrouve l'utilisation d'UDP :
Il est évidemment essentiel qu'on sache si son correspondant est joignable ou pas. Comment cette « joignabilité » est-elle vérifiée ? La section 6.3 énumère les mécanismes disponibles. Entre autres :
Mais on peut aussi tester explicitement, par le mécanisme Echo Nonce de la section 10.1. Le testeur émet un message LISP avec les bits N (numnique présent) et E (écho demandé), met le numnique à une valeur aléatoire (RFC 4086), et envoie le paquet. (La section 4.1 précise toutefois que cela ne doit pas être utilisé sur l'Internet public.) L'ETR à l'autre bout doit normalement renvoyer ce numnique dans son prochain paquet. Notons que cela teste la bidirectionnalité de la connexion. Si on n'obtient pas de réponse, cela peut signifier que la connexion est complètement coupée ou tout simplement qu'elle ne marche que dans un seul sens. Mais, surtout, l'absence de réponse peut indiquer le cas où l'ETR qui reçoit le trafic pour un site n'est pas le même routeur que l'ITR qui génère le trafic sortant. Dans ce cas, l'absence de réponse n'est pas un problème. Enfin, le routeur en face peut tout simplement être configuré pour ignorer les demandes d'écho.
Une autre solution pour tester est donc d'utiliser les messages du système de correspondance EID->RLOC, les Map Request et Map Reply. Ces messages ont un bit P (pour probe) qui indique que le demandeur est intéressé par la joignabilité du site demandé.
LISP impose donc des traitements supplémentaires, par rapport à ceux de l'IP classique. Est-ce que cela ne ralentit pas trop les routeurs ? La section 15 explore le problème et explique pourquoi LISP ne nécessite pas de changement du matériel de forwarding (les ASIC du routeur). La plupart des routeurs ont déjà du code prévu pour gérer des tunnels (encapsuler et décapsuler) rapidement.
Comment sera déployé LISP ? Le RFC 7215 décrit plusieurs scénarios possibles et les détails. Principal problème : combien d'ITR et d'ETR pour un opérateur ? Grâce aux tunnels, on peut n'avoir qu'un seul ITR et un seul ETR pour tout le trafic. Cela poserait évidemment des problèmes de redondance et de performance. Mais avoir beaucoup de xTR peut poser des problèmes d'administration. Si les ITR sont largement automatiques (leur cache des correspondance EID->RLOC est bâti dynamiquement), avoir beaucoup d'ETR risque d'être compliqué à maintenir (car l'ETR doit avoir dans sa configuration une liste des EID qu'il va gérer).
Un des gros problèmes que pose la séparation de l'identificateur et du localisateur est la sécurité : nouvelles attaques (par exemple contre le système de correspondance), nouveaux pièges (une machine qui utiliserait le vrai RLOC mais mentirait sur l'EID, par exemple). La section 16 du RFC examine les risques théoriquement présents dans LISP, mais lisez aussi les RFC 7835 et RFC 9303.
Comme avec toutes les techniques de tunnel, un émetteur peut facilement tricher sur l'adresse source interne (celle qui sera utilisée après décapsulation par l'ETR). Pour se protéger, un ITR devrait n'encapsuler un paquet que si l'adresse source est un EID qu'il contrôle. Et un ETR ne devrait transmettre un paquet que si la destination est un EID sous sa responsabilité.
Le test de la réversibilité (via les numniques, cf. section 3) est essentiel contre ces risques. Sans ce test, un ETR pirate pourrait par exemple envoyer un Map Reply en réponse aveugle à un Map Request, et le voir accepté, avec des données mensongères (naturellement, l'ITR n'accepte que des Map Replies qui sont en réponse à un Map Request de sa part). Avec ce système de numnique que le récepteur doit mettre dans sa réponse, un attaquant aveugle (qui n'est pas situé sur le chemin des paquets et ne peut donc pas les observer) aura donc peu de chances de réussir à faire accepter ses paquets.
En revanche, un attaquant situé sur le chemin, et qui peut observer les paquets qui passent, a la possibilité de commettre bien plus de dégâts. Mais c'est déjà le cas avec les protocoles actuels (par exemple, les numéros de séquence difficiles à deviner du RFC 6528 ne protègent pas TCP contre des attaquants situés sur le chemin).
Les attaques par déni de service sont évidemment possibles avec LISP : une des précautions recommandées est de limiter le trafic des Map Requests et Map Replies. Autre attaque par déni de service, un ITR peut être victime d'une machine qui essaie de remplir la table des correspondances EID->RLOC du routeur. Il est donc important d'envisager ce cas, par exemple en permettant de garder dans le cache les entrées les plus fréquemment accédées (pour éviter qu'elles ne soient retirées automatiquement pour faire de la place). Mais il n'existe pas de solution miracle contre ce problème d'envahissement de cache.
Le fonctionnement de LISP est schématisé sur ce dessin : Alice a l'identificateur (EID)
2001:db8:1::1
et veut écrire à Bob qui a le
2001:db8:2::42
(dans la plupart des cas, Alice
aura trouvé l'adresse de Bob dans le DNS, comme aujourd'hui). Ni Alice, ni Bob n'ont
à connaître LISP, chacun croit utiliser de l'IP normal. Alice envoie
donc un paquet standard, à destination de
2001:db8:2::42
. Mais, sur le trajet, il y a un
ITR, un routeur LISP. Celui-ci va chercher (dans le système de
correspondance, non montré ici) le RLOC (le localisateur) de Bob
(ou, plus exactement, de son site). Une fois qu'il a trouvé
2001:db8:ff::666
, il encapsule le paquet
derrière un en-tête LISP et envoie ce paquet à l'ETR, l'autre
routeur LISP en face, 2001:db8:ff::666
. Les
routeurs de l'Internet, entre l'ITR et l'ETR, ne connaissent pas
LISP non plus et routent ce qui leur semble un paquet IP
normal. Arrivé à l'ETR, le paquet est décapsulé et poursuit son
chemin par du routage IP classique. Sur tout le schéma, seuls l'ITR
et l'ETR sont des nouveautés LISP.
Modifions légèrement le schéma pour y mettre le système de
correspondance : On y voit l'ITR
demander à son résolveur « Quel est le localisateur de
2001:db8:2::42
? » et son résolveur lui
répondre. Le résolveur avait demandé au serveur qui avait reçu de
l'ETR un enregistrement disans « Le localisateur de
2001:db8:2::42
est
2001:db8:ff::666
». Entre le résolveur et le
serveur se trouve le cœur du système de correspondance. LISP
en a plusieurs possibles, comme le ALT du RFC 6836.
Où trouve-t-on du code LISP aujourd'hui ?
Comme pour tous les protocoles fondés sur le principe de la séparation de l'identificateur et du localisateur, il est toujours utile, si on veut en comprendre les principes, de (re)lire l'article fondateur de Chiappa, « Endpoints and Endpoint names: A Proposed Enhancement to the Internet Architecture ». Autres articles à lire :
La section 18 de notre RFC décrit les changements depuis le RFC 6830. Le principal est bien sûr que LISP n'est plus considéré comme expérimental, on peut le déployer sur l'Internet public, modulo les précautions de la section 4.1. Sinon :
La section 4.1 décrit ce qu'il faut faire et ne pas faire lorsqu'on déploie LSIP « en vrai » sur l'Internet public. Quand on n'est plus expérimental, il faut faire attention. Bien des techniques de LISP (comme la mise à jour automatique des données des routeurs juste en regardant un paquet qui passe, le gleaning, clairement dangereux) ne sont sûres que dans un environnement fermé.
Date de publication du RFC : Mars 2024
Auteur(s) du RFC : R. Housley (Vigil Security)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF lamps
Première rédaction de cet article le 22 novembre 2024
Ce court RFC ajoute aux certificats PKIX du RFC 5280 la possibilité de contenir des adresses de courrier électronique dont la partie locale est en Unicode. Et il modifie légèrement les règles pour les noms de domaine en Unicode dans les certificats. Il remplace le RFC 8399, avec peu de changements.
Les certificats sur
l'Internet sont normalisés dans le RFC 5280, qui décrit un profil de
X.509 nommé PKIX
(définir un profil était nécessaire car la norme X.509 est bien trop
riche et complexe). Ce RFC 5280 permettait des
noms de domaine en
Unicode (sections 4.2.1.10 et 7 du RFC 5280) mais il suivait l'ancienne norme IDN, celle des
RFC 3490 et suivants. Depuis, les IDN sont
normalisés dans le RFC 5890 et suivants, et
notre nouveau RFC 9549 modifie très légèrement le RFC 5280 pour s'adapter à cette nouvelle norme de
noms de domaines en Unicode. Les noms de domaine dans un certificat
peuvent être présents dans les champs Sujet (titulaire du
certificat) et Émetteur (AC ayant signé le certificat) mais aussi
dans les contraintes sur le nom (une autorité de certification peut être
limitée à des noms se terminant en example.com
,
par exemple).
Notez que, comme avant, ces noms sont exprimés dans le certificat
en Punycode (RFC 3492,
xn--caf-dma.fr
au lieu de
café.fr
), appelé A-label
dans notre RFC. C'est un bon exemple du fait que les
limites qui rendaient difficiles d'utiliser des noms de domaine en
Unicode n'avaient rien à voir avec le DNS (qui n'a jamais été limité à
ASCII, contrairement à ce qu'affirme une légende
courante). En fait, le problème venait des applications (comme
PKIX), qui ne s'attendaient pas à des noms en
Unicode. Un logiciel qui traite des certificats aurait été bien
étonné de voir des noms de domaines non-ASCII, et
aurait peut-être planté. D'où ce choix du
Punycode (A-label) par opposition à la forme plus
lisible du U-label.
Nouveauté plus importante du RFC 8399, mis à jour par notre RFC 9549, les adresses de courrier électronique en Unicode (EAI pour Email Address Internationalization). Elles étaient déjà permises par la section 7.5 du RFC 5280, mais seulement pour la partie domaine (à droite du @). Désormais, elles sont également possibles dans la partie locale (à gauche du @). Le RFC 8398 donne tous les détails sur ce sujet.
Reste à savoir quelles AC acceptent
Unicode. En 2018, j'avais testé avec
Let's Encrypt (avec le
client Dehydrated, en
mettant le Punycode dans domains.txt
) et ça
marchait, regardez le certificat de
. Le voici, affiché
par GnuTLS :
https://www.potamochère.fr/
% gnutls-cli www.potamochère.fr ... - subject `CN=www.xn--potamochre-66a.fr', issuer `CN=R10,O=Let's Encrypt,C=US', serial 0x03a34cfc017b4311da0b21797cd250ebd3c0, RSA key 4096 bits, signed using RSA-SHA256, activated `2024-11-01 05:26:59 UTC', expires `2025-01-30 05:26:58 UTC', pin-sha256="6y…
D'autres AC acceptent ces noms en Unicode : Gandi le fait aussi, par exemple. On notera que le célèbre service de test de la qualité des configurations TLS, SSLlabs, gère bien les IDN :
Enfin, le registre du
.ru
a participé au développement de
logiciels pour traiter l'Unicode dans les certificats.
La section 1.2 résume les changements depuis le RFC 8399. Notamment :
♚.example
ne
serait pas légal. Ce point est désormais explicite.xn--potamochre-66a.fr
et pas
potamochère.fr
). Cela permet d'éviter de
déclencher certaines
failles de sécurité.Date de publication du RFC : Novembre 2024
Auteur(s) du RFC : C. Bormann (Universität Bremen
TZI)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF cbor
Première rédaction de cet article le 19 novembre 2024
Voici une légère mise à jour de la grammaire du langage de description de schéma CDDL (Concise Data Definition Language), originellement normalisé dans le RFC 8610. Pas de gros changement.
Il y avait juste quelques errata à traiter, et des ambiguités concernant notamment les chaines de caractères. Il était devenu nécessaire de modifier l'ABNF. CDDL a été décrit dans le RFC 8610, puis étendu par le RFC 9165. Il vise à décrire un schéma pour des fichiers CBOR ou JSON. Depuis quatre ans qu'il est normalisé, plusieurs erreurs ont été relevées dans la norme. (Dont une, c'est amusant, causée par le traitement du source du RFC, traitement qui avait fait disparaitre accidentellement des barres obliques inversées.)
Donc, notre RFC 9682 modifie l'ABNF qui décrit les littéraux pour les chaines de caractères, ABNF qui était trop laxiste (section 2 du RFC). Il change également la grammaire générale (section 3) pour autoriser (au niveau syntaxique) des schémas vides (ils restent interdits au niveau sémantique). Ainsi, l'ancienne règle :
cddl = S 1*(rule S)
devient :
cddl = S *(rule S)
Date de publication du RFC : Novembre 2024
Auteur(s) du RFC : J. Zern, P. Massimino, J. Alakuijala
(Google)
Pour information
Première rédaction de cet article le 19 novembre 2024
Un RFC sur un
format d'image : il décrit le format WebP et
enregistre officiellement le type image/webp
.
Bon, des images au format WebP, vous en avez forcément vu un peu partout sur le Web. Mais le format n'était pas encore documenté par un organisme de normalisation. C'est désormais fait. WebP s'appuie sur le format RIFF. Plus précisément, RIFF est un cadre générique qui peut se décliner en divers formats. C'est pour cela que les fichiers WebP commencent par les quatre codes ASCII correspondant à "RIFF".
WebP permet de la compression avec perte ou sans perte, et, d'une manière générale, tout ce qu'on attend d'un format graphique. C'est donc un concurrent de JPEG, PNG (RFC 2083), GIF… L'encodage lors de la compression avec perte est celui de VP8 (RFC 6386), produisant des images plus petites que ses prédécesseurs, ce qui est bon pour le réseau. La compression sans perte est faite en LZ77 et Huffman. WebP permet également le stockage de métadonnées codées en EXIF ou en XMP. Ah, et WebP permet des animations.
Cette image, sur un sujet politique qui est toujours d'actualité, est au format WebP :
La section 2 du RFC décrit le format en détail. Les trois premiers champs sont la chaine "RIFF", la taille du fichier en binaire et la chaine "WEBP", chacun sur quatre octets. Affichons ces trois champs :
% dd if=how-do-you-like-it-wrapped.webp bs=4 count=3 RIFFXWEBP 3+0 records in 3+0 records out 12 bytes copied…
La section 3 décrit ensuite le stockage des pixels sans perte.
Comme avec tout format, les logiciels qui lisent les fichiers WebP (qu'on télécharge souvent depuis l'Internet, via des sources pas forcément de confiance) doivent être prudents dans l'analyse des fichiers. Les fichiers peuvent être invalides, par accident ou délibérément, et mener le logiciel négligent à lire en dehors d'un tableau ou déréférencer un pointeur invalide. La paranoïa est recommandée quand on lit ces fichiers. Plusieurs failles ont touché la libwebp, l'implémentation de référence, dont la grave CVE-2023-4863 en 2023 qui avait fait, à juste titre, beaucoup de bruit.
Toujours question sécurité, WebP n'a pas de contenu exécutable (contrairement à, par exemple, TrueType). Mais les métadonnées EXIF ou en XMP peuvent poser des problèmes de sécurité et doivent donc être interprétées avec prudence.
Le type
image/webp
est désormais dans
le registre des types de médias (cf. le
formulaire rempli).
Si on regarde des fichiers WebP, on a ce genre d'informations :
% file resolution-dns.webp resolution-dns.webp: RIFF (little-endian) data, Web/P image % file --mime-type resolution-dns.webp resolution-dns.webp: image/webp
Pour finir, produisons un peu d'images WebP pour voir. Si on utilise Asymptote, c'est facile :
% asy -f webp -o resolution-dns.webp resolution-dns.asy
On peut aussi convertir depuis les formats existants, ici avec ImageMagick :
% convert -verbose resolution-dns.png resolution-dns.webp resolution-dns.png PNG 823x508 823x508+0+0 8-bit sRGB 31713B 0.020u 0:00.011 resolution-dns.png=>resolution-dns.webp PNG 823x508 823x508+0+0 8-bit sRGB 16580B 0.040u 0:00.047
Si on fait des graphiques depuis ses programmes en Python avec Matplotlib, il suffit, depuis la version 3.6, de :
plot.savefig(fname="test.webp") # No need to indicate the format, it # is taken from the file extension.
(Voir aussi ce beau résultat sur Wikimedia Commons.)
Première rédaction de cet article le 11 novembre 2024
La semaine dernière, 26 TLD africains avaient des problèmes DNS. Pourquoi ? Parce qu'une machine quelque part ne se mettait plus à jour et servait des données erronées.
Le problème semble s'être déclenché autour du 29 octobre. Des signalements ont été faits sur les réseaux
sociaux comme quoi certain·es utilisateurices n'arrivaient pas à
résoudre des noms en
.mg
. On voit ici un test
fait avec les sondes RIPE
Atlas et le logiciel Blaeu :
% blaeu-resolve --requested 100 --displayvalidation --type NS mg [dns-tld.ird.fr. ns-mg.afrinic.net. ns-mg.malagasy.com. ns.dts.mg. ns.nic.mg. pch.nic.mg.] : 39 occurrences [ (Authentic Data flag) dns-tld.ird.fr. ns-mg.afrinic.net. ns-mg.malagasy.com. ns.dts.mg. ns.nic.mg. pch.nic.mg.] : 52 occurrences [ERROR: SERVFAIL] : 5 occurrences [ERROR: NXDOMAIN] : 2 occurrences Test #81689686 done at 2024-11-08T15:45:06Z
Cinq sondes ont un résolveur qui
répond SERVFAIL (Server Failure). On peut
soupçonner un problème DNSSEC et on voit en effet avec DNSviz que
des signatures expirées sont reçues par
certains clients DNS. Le fait que la plupart des utilisateurices ne
voient pas de problème laisse entendre que tous les serveurs faisant
autorité pour .mg
ne sont pas également
affectés. Examinons-les tous :
% for ns in ns.dts.mg. ns-mg.malagasy.com. dns-tld.ird.fr. pch.nic.mg. ns.nic.mg. ns-mg.afrinic.net.; do for> echo $ns for> dig @$ns mg. NS for> done ns.dts.mg. … ;; ANSWER SECTION: mg. 7200 IN NS ns.nic.mg. mg. 7200 IN NS ns-mg.afrinic.net. mg. 7200 IN NS ns.dts.mg. mg. 7200 IN NS ns-mg.malagasy.com. mg. 7200 IN NS pch.nic.mg. mg. 7200 IN NS dns-tld.ird.fr. mg. 7200 IN RRSIG NS 8 1 7200 ( 20241113113756 20241030045734 18 mg. ExrGRrWttb4umpOtW2d8gbW2J1p68LENdw3X409lP1hm … ;; Query time: 193 msec ;; SERVER: 196.192.32.2#53(ns.dts.mg.) (UDP) ;; WHEN: Fri Nov 08 16:46:03 CET 2024 ;; MSG SIZE rcvd: 548 ns-mg.afrinic.net. … ;; ANSWER SECTION: mg. 7200 IN NS ns.dts.mg. mg. 7200 IN NS ns.nic.mg. mg. 7200 IN NS dns-tld.ird.fr. mg. 7200 IN NS ns-mg.malagasy.com. mg. 7200 IN NS pch.nic.mg. mg. 7200 IN NS ns-mg.afrinic.net. mg. 7200 IN RRSIG NS 8 1 7200 ( 20241101171148 20241018111647 18 mg. UIIoFCD8kaXyqTIVsrgBdiwQZxwHOXsnZjpPky5p5dRa … ; Query time: 156 msec ;; SERVER: 2001:43f8:120::35#53(ns-mg.afrinic.net.) (UDP) ;; WHEN: Fri Nov 08 16:46:04 CET 2024 ;; MSG SIZE rcvd: 504
Je n'ai gardé que la réponse de deux des serveurs. Celle de
ns.dts.mg
ne montre aucun problème particulier
mais celle de ns-mg.afrinic.net
montre une
signature expirée (20241101171148 = 1 novembre alors que le test a
été fait le 8). Pas étonnant que les résolveurs qui valident avec
DNSSEC soient mécontents. Mais pourquoi ce serveur fait-il cela ? En
testant avec le logiciel
check-soa, on voit :
% check-soa mg dns-tld.ird.fr. 13.39.116.127: OK: 2024110815 ns-mg.afrinic.net. 2001:43f8:120::35: OK: 2024102913 196.216.168.35: OK: 2024102913 ns-mg.malagasy.com. 51.178.182.212: OK: 2024110815 ns.dts.mg. 196.192.32.2: OK: 2024110815 ns.nic.mg. 196.192.42.153: OK: 2024110815 pch.nic.mg. 2001:500:14:6121:ad::1: OK: 2024110815 204.61.216.121: OK: 2024110815
Aïe, le numéro de série est en retard (2024102913 alors que les autres serveurs sont à 2024110815). Donc, ce serveur ne se met plus à jour avec son serveur maitre, il continue à distribuer de vieilles données.
Mais attention, ce serveur ns-mg.afrinic.net
est anycasté. Ce ne sont peut-être
pas toutes les instances anycast qui ont le
problème. D'ailleurs, check-soa depuis d'autres machines ne montre
pas de problème. Utilisons encore les sondes RIPE Atlas pour
interroger uniquement ce serveur, en demandant son NSID (RFC 5001) :
% blaeu-resolve --requested 100 --nameserver ns-mg.afrinic.net. --nsid --type SOA mg Nameserver ns-mg.afrinic.net. [NSID: s03-ns2.iso; ns.nic.mg. ramboa.nic.mg. 2024110815 14400 3600 604800 3600] : 41 occurrences [NSID: s01-ns2.pkl; ns.nic.mg. ramboa.nic.mg. 2024102913 14400 3600 604800 3600] : 28 occurrences [NSID: s01-ns2.pkl; ns.nic.mg. ramboa.nic.mg. 2024110815 14400 3600 604800 3600] : 24 occurrences [NSID: s04-ns2.jnb; ns.nic.mg. ramboa.nic.mg. 2024110815 14400 3600 604800 3600] : 4 occurrences [NSID: None; ns.nic.mg. ramboa.nic.mg. 2024110815 14400 3600 604800 3600] : 1 occurrences [TIMEOUT] : 2 occurrences Test #81689801 done at 2024-11-08T15:54:11Z
On voit ici que l'instance s01-ns2.pkl
est
celle qui a le problème : le numéro de série est vieux. (Pour
compliquer les choses, notons qu'il y a deux instances ayant le même
NSID, ce qui ne facilite pas le déboguage.)
Une partie des clients DNS (ceux qui ont la malchance de tomber sur cette instance) reçoivent donc de la vieille information. Les domaines créés récemment, par exemple, ne sont pas connus de cette instance. Et, comme vu plus haut, elle sert des signatures expirées, ce qui peut planter DNSSEC. (Normalement, le résolveur validant, en recevant ces signatures expirées, devrait réessayer auprès d'un autre serveur du domaine mais, apparemment, certains ne le font pas.)
Et le problème n'affectait pas que .mg
. Ce
serveur secondaire, géré par Afrinic, sert 26
TLD en
tout. (Les gérants de ces TLD ont été notifiés. Si vous voulez en
parler à Afrinic, c'est leur ticket [DNS
#924626]. Si vous connaissez l'Internet, vous ne serez pas surpris
d'apprendre que, dans deux cas, l'adresse de contact était invalide
et générait un message d'erreur.) Voici par exemple ce que cela
donnait pour .td
:
% blaeu-resolve --requested 100 --nameserver ns-td.afrinic.net. --nsid --type SOA td Nameserver ns-td.afrinic.net. [NSID: s01-ns2.pkl; pch.nic.td. hostmaster.nic.td. 2024110815 21600 3600 604800 7200] : 20 occurrences [NSID: s01-ns2.pkl; pch.nic.td. hostmaster.nic.td. 2024102914 21600 3600 604800 7200] : 25 occurrences [NSID: s03-ns2.iso; pch.nic.td. hostmaster.nic.td. 2024110815 21600 3600 604800 7200] : 47 occurrences [NSID: None; pch.nic.td. hostmaster.nic.td. 2024110815 21600 3600 604800 7200] : 1 occurrences [NSID: s04-ns2.jnb; pch.nic.td. hostmaster.nic.td. 2024110815 21600 3600 604800 7200] : 5 occurrences Test #81691145 done at 2024-11-08T16:55:58Z
Le problème a finalement été réparé le 10 novembre. Afrinic a
retiré du service l'instance invalide. Ici, on voit qu'elle n'est
plus présente (test avec le .mz
) :
% blaeu-resolve --requested 100 --displayvalidation --nsid --nameserver ns-mz.afrinic.net --type SOA mz Nameserver ns-mz.afrinic.net [NSID: s03-ns2.iso; anyns.uem.mz. hostmaster.nic.mz. 2024111106 480 300 259200 21600] : 48 occurrences [NSID: s01-ns2.jinx; anyns.uem.mz. hostmaster.nic.mz. 2024111106 480 300 259200 21600] : 13 occurrences [TIMEOUT] : 33 occurrences [NSID: s04-ns2.jnb; anyns.uem.mz. hostmaster.nic.mz. 2024111106 480 300 259200 21600] : 4 occurrences [NSID: None; anyns.uem.mz. hostmaster.nic.mz. 2024111106 480 300 259200 21600] : 1 occurrences Test #81847650 done at 2024-11-11T06:14:08Z
Les leçons à en tirer :
Annexe : la liste des domaines africains servis par la machine d'Afrinic pendant la panne :
.bi .bj .bw .ci .cm .dz .gm .gn .ke .km .lr .ls .ly .mg .mr .mz .ne .rw .sd .ss .td .tn .ug .zm .موريتانيا .تونس
First publication of this article on 10 November 2024
On November 2 and 3 was the IETF hackathon in Dublin. I worked on the greasing of DNS answers from an authoritative name server. What is greasing? Continue reading.
One of the big technical problems of the Internet is its ossification: software is written by people who did not read the technical standards, or did not understand them, specially software in the middleboxes (load balancers, firewalls, etc). As a result, some things that are possible according to the technical specification are de facto forbidden by broken software. This makes difficult to deploy new things. For instance, TLS 1.3 had to pretend to be 1.2 (and add an extension to say "I am actually 1.3") because too many middleboxes prevented the establishement of TLS sessions if the version was 1.3 (see RFC 8446, section 4.1.2). This problem is widespread in the Internet, specially since there is typically no way to talk to the middlebox software authors and these boxes are popular among managers.
A way to fight ossification is greasing. Basically, the idea is to exercise all the features and options of a protocol from day one, not waiting that you really need them. This way, broken software will be detected immediately, not many years after, when it is entrenched. TLS was the first protocol to go that way (see RFC 8701) and it proved effective. QUIC also uses greasing (RFC 9287).
The DNS could
benefit from greasing as well, since it is often difficult to deploy
new features, because they sometimes break bad software (it was the
case with the cookies of RFC 7873). Hence the current
Internet Draft draft-ietf-dnsop-grease
.
OK, so, let's grease the rusted parts of the Internet but where exactly, and how? DNS servers are basically of two kinds: resolver and authoritative servers. The version -00 of the draft only mentions resolvers because they are in the best place to test greasing and to report what broke. The general idea is that the resolver sends its queries with "unexpected" values (unallocated EDNS options, unallocated EDNS flags, etc, all of them "legal" according to the RFC). If it receives no reply from the authoritative server (or a bad one such as FORMERR), and, if retrying without greasing work, the resolver knows there is a problem in the path to this authoritative name server and can log it and/or report it (for instance through RFC 9567). The remaining question is: what we can grease? We need options that are legal to send but new and unexpected. For plain DNS, there is no hope: there is only one remaining (unallocated) bit in the flags (RFC 1035, section 4.1.1) of the DNS query. So, it means we can grease only with EDNS stuff: EDNS version number, EDNS options, and EDNS flags. For instance, unknown EDNS options are supposed to be ignored (otherwise, it would never be possible to deploy new options). Now, how to choose the unallocated values to send? TLS decided to reserve ranges of values for which to choose randomly. The risk is that some bad software will treat this range in a special way but, at least, it guarantees there will be no collision with a future allocation.
This is the current version (-00) of the draft. Now, the work at the hackahton. First, I decided to work on an authoritative server. A priori, it is less useful than a resolver, because, unlike the resolver, the authoritative name server cannnot know if its reply was accepted or not, or created problems. But it could be useful on test zones, to see (for instance through the use of RIPE Atlas probes) if they have resolution issues. The work was done on the software Drink.
First test, sending back in the reply two EDNS records. Sending two OPT records in a response does not seem forbidden by the RFC (which prohibit it only in a query, RFC 6891, section 6.1.1) but dig does not like it:
% dig +norec grease.courbu.re SOA @31.133.134.59 ;; Warning: Message parser reports malformed message packet.
It creates problems with many other programs and it is not clear if it is legitimate so let's stop here.
Second test, sending an EDNS reply with a version number which is higher than the one requested. This is legal, the last paragraph of Section 6.1.3 of RFC 6891 says that a responder can respond with a higher EDNS version than what was requested by the requestor. (And it explains why, and the limits, for instance to keep the same format.) I tried that for DNS greasing and typical resolvers seem to be happy with it. But DNS testing tools (very useful tools, do not forget to tests your zones with them!) disagree. ednscomp says "expect: OPT record with version set to 0" (not greater-or-equal, stricly equal). DNSviz says "The server responded with EDNS version 1 when a request with EDNS version 0 was sent, instead of responding with RCODE BADVERS. See RFC 6891, Sec. 6.1.3." (We obviously do not read this section in the same way. To me, it mentions BADVERS only in a different context.) And Zonemaster also disagrees with me. So, there is a debate: when a responder knows both version 0 and some higher version (say, version 1), can it reply to a EDNS=0 query with a EDNS=1 response? Can we use that for greasing?
Less controversial, adding EDNS options and flags. You can see the result here:
% dig @192.168.41.237 grease.courbu.re SOA ; <<>> DiG 9.18.28-0ubuntu0.24.04.1-Ubuntu <<>> @192.168.41.237 grease.courbu.re SOA ; (1 server found) ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 61647 ;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1 ;; WARNING: recursion requested but not available ;; OPT PSEUDOSECTION: ; EDNS: version: 1, flags:; MBZ: 0x0072, udp: 1440 ; OPT=16282: 58 ("X") ; OPT=17466: 58 58 58 58 58 58 58 58 58 ("XXXXXXXXX") ; OPT=18095: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 ("XXXXXXXXXXXXXXXXXXX") ; OPT=16375: 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 ("XXXXXXXXXXXXXXXX") ; OPT=18: 06 72 65 70 6f 72 74 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 (".report.example.com.") ; COOKIE: db279863745c8e7198d4274c54233c48 (good) ;; QUESTION SECTION: ;grease.courbu.re. IN SOA ;; ANSWER SECTION: grease.courbu.re. 0 IN SOA dhcp-863b.meeting.ietf.org. root.invalid. ( 2024111007 ; serial 1800 ; refresh (30 minutes) 300 ; retry (5 minutes) 604800 ; expire (1 week) 86400 ; minimum (1 day) ) ;; Query time: 1 msec ;; SERVER: 192.168.41.237#53(192.168.41.237) (UDP) ;; WHEN: Sun Nov 10 07:33:30 GMT 2024 ;; MSG SIZE rcvd: 224
Here, the authoritative name server (a recent version of Drink,using
the --greasing
option at startup), sent:
Apparently, from tests with various resolver software and through RIPE Atlas probes, it does not break anything, thus paving the way for future allocations. Note that option codes, flags and the number of options are choosen at random, following the draft.
If you want to see the changes it required in the name server, this is this pull request.
Thanks to Shumon Huque and Mark Andrews for code, conversation and explanations.
Auteur(s) du livre : Clément Perarnaud, Julien
Rossi, Francesca Musiani, Lucien
Castex
Éditeur : Le bord de l'eau
9782385190682
Publié en 2024
Première rédaction de cet article le 9 novembre 2024
La fragmentation d'Internet est un sujet complexe, et souvent mal traité. Ce court livre fait le point sur les différentes questions que soulève ce débat et d'abord « qu'est-ce que c'est que la fragmentation ? » J'en recommande la lecture.
Le terme de fragmentation a en effet souvent été utilisé dans un but politique. Des influenceurs étatsuniens ont dit que le RGPD (ou le DSA), avec son application extra-territoriale, menait à une fragmentation de l'Internet. D'autres influenceurs étatsuniens (ou les mêmes) dénoncent toute activité de souveraineté numérique (imposer le stockage des données dans le pays, imposer que les échanges entre entités du pays restent dans le pays, etc) comme de la fragmentation. On entend souvent dire que les Chinois ou les Russes auraient « leur propre Internet » (ce qui n'a aucun sens). On se demande souvent si les gens qui répètent avec gourmandise qu'il y a fragmentation de l'Internet avec les actions russes ou chinoises le déplorent, ou bien s'ils voudraient que d'autres pays fassent pareil… Enfin, le débat est souvent marqué par l'hypocrisie comme lorsque les USA dénoncent le fait que le gouvernement chinois veuille empêcher ses citoyens d'aller sur Facebook alors que lui-même fait tout pour bloquer TikTok. En paraphrasant OSS 117, on pourrait dire « non, mais la fragmentation, c'est seulement quand les gens ont des manteaux gris et qu'il fait froid ».
Bref, le débat est mal parti. D'où l'importance de ce livre, qui est tiré d'un rapport au Parlement européen des mêmes auteurs, et qui étudie sérieusement les différents aspects de la question.
Déjà, première difficulté, définir la fragmentation. Est-ce lorsque une machine ne peut plus envoyer un paquet IP à une autre ? (La traduction d'adresses est-elle un facteur de fragmentation ?) Est-ce lorsque le résolveur DNS par défaut ne résout pas certains noms ? (Et si on peut en changer ?) Est-ce quand les Chinois n'utilisent pas les mêmes réseaux sociaux ou moteurs de recherche que nous ? (Ne riez pas, j'ai déjà entendu cette affirmation.) Bien des participant·es au début ne connaissent pas le B.A. BA du modèle en couches et n'essaient même pas de définir rigoureusement la fragmentation. Les auteur·es du livre s'attachent à examiner les définitions possibles. Non, ielles ne fournissent pas « la bonne définition », le problème est trop complexe pour cela. Il est sûr que tout·e utilisateurice de l'Internet ne voit pas la même chose et n'a pas le même vécu. Mais enfermer cette observation évidente dans une définition rigoureuse reste difficile.
D'un côté, disent les auteure·es, il y a bien des tendances centrifuges. De l'autre, non, l'Internet n'est pas fragmenté, malgré les affirmations de ceux qui tentent des prophéties auto-réalisatrices (comme le notent les auteur·es, le thème de la fragmentation et l'utilisation de termes journalistiques comme « splinternet » est souvent simplement une arme rhétorique). Mais est-ce que cela durera ?
Le livre détaille l'action des États qui pousse à la fragmentation, le jeu des lois du marché qui peut mener à la création de silos fermés (la fameuse « minitélisation de l'Internet »), etc.
Bon, une critique, quand même. Tout débat sur la politique Internet est forcément complexe car il faut à la fois comprendre la politique et comprendre Internet. Et, s'agissant de l'Internet, des faits de base (comme le pourcentage d'utilisateurs qui utilisent un résolveur DNS public) sont souvent difficiles à obtenir. Néanmoins, prétendre que dix sociétés résolvent la moitié des requêtes DNS au niveau mondial est impossible à croire. Le chiffre, cité p. 73, est tiré d'un article grossièrement anti-DoH qui ne cite pas ses sources. (Pour voir à quel point ce chiffre est invraisemblable, pensez simplement que toutes les études montrent que les résolveurs DNS publics sont une minorité des usages, et surtout que cela dépend des pays, les Chinois n'utilisant pas les mêmes que les Français et ielles sont nombreux.) L'usage de chiffres « au doigt mouillé » est malheureusement fréquent dans les débats de politique Internet.
Mais, bon, je l'ai dit, la question est très complexe, les données souvent dures à obtenir et cette critique ne doit pas vous empêcher d'apprendre tout sur le débat « fragmentation » dans cet excellent livre. Et rappelez-vous, l'avenir de l'Internet dépend aussi de vous.
Date de publication du RFC : Novembre 2024
Auteur(s) du RFC : J. Snijders
(Fastly), B. Cartwright-Cox (Port
179), Y. Qu (Futurewei)
Chemin des normes
Première rédaction de cet article le 8 novembre 2024
Que doit faire un routeur BGP lorsque le pair en face ne traite manifestement plus ses messages ? Ce n'était pas précisé avant mais la réponse est évidente : raccrocher (mettre fin à la communication).
Un problème classique lors d'une connexion réseau, par exemple sur TCP, est de détecter si la machine en face est toujours là. Par défaut, TCP ne fournit pas ce service : s'il n'y a aucun trafic, vous ne pouvez pas savoir si votre partenaire est mort ou simplement s'il n'a rien à dire. Une coupure de réseau, par exemple, ne sera pas détectée tant que vous n'avez pas de trafic à transmettre (avec attente d'une réponse). Et BGP ne transmet que les changements donc l'absence de trafic ne signale pas forcément un problème. Il existe des solutions, comme d'envoyer périodiquement des messages même quand on n'a rien à dire (RFC 4271, section 4.4), mais aucune n'est parfaite : un programme qui utilise TCP ne sait typiquement pas immédiatement si ses messages sont vraiment partis (et l'alarme actuelle ne couvre que la réception des messages, pas leur envoi). Et BGP n'a pas de fonction « ping », qui exigerait une réponse.
Quand la coupure est franche et détectée, aucun problème, la session BGP (RFC 4271) s'arrête et les routes correspondantes sont retirées de la table de routage. Mais ce RFC traite le cas de où le routeur BGP d'en face a un problème mais qu'on ne détecte pas. Un exemple : si ce routeur en face a complètement fermé sa fenêtre TCP de réception (RFC 9293, notamment la section 3.8.6), on ne pourra pas lui envoyer de messages, mais la session BGP ne sera pas coupée et les paquets continueront à être transmis selon des annonces de routage dépassées, alors qu'ils finiront peut-être dans un trou noir (le problème des « zombies BGP »).
La solution (section 3 de notre RFC) est de modifier
l'automate de BGP (RFC 4271, section 8), en ajoutant une alarme (RFC 4271, section 10),
SendHoldTimer
. Quand elle expire, on coupe la
connexion TCP et on retire les routes qu'avait annoncé le pair dont
on n'a plus de nouvelles. Le RFC recommande une configuration par
défaut de huit minutes de patience avant de déclencher l'alarme.
L'erreur « Send Hold Timer Expired » est désormais dans le registre IANA des erreurs BGP et tcpdump sait l'afficher. Il existe plusieurs mises en œuvre de ce RFC :
Si les processus IETF vous passionnent, il y a une documentation des discussions autour de ce RFC.
Date de publication du RFC : Octobre 2024
Auteur(s) du RFC : D. Thaler
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF bpf
Première rédaction de cet article le 1 novembre 2024
On a souvent envie de faire tourner des programmes à soi dans le noyau du système d'exploitation, par exemple à des fins de débogage ou d'observation du système. Cela soulève plein de problèmes (programmer dans le noyau est délicat) et la technique eBPF permet, depuis de nombreuses années, de le faire avec moins de risques. Ce RFC spécifie le jeu d'instructions eBPF. Programmeureuses en langage d'assemblage, ce RFC est pour vous.
eBPF désigne ici un jeu d'instructions (comme ARM ou RISC-V). Programmer en eBPF, c'est donc programmer en langage d'assemblage et, en général, on ne le fait pas soi-même, on écrit dans un langage de plus haut niveau (non spécifié ici mais c'est souvent un sous-ensemble de C) et on confie à un compilateur le soin de générer les instructions. Ce jeu d'instructions a plusieurs particularités. Notamment, il est délibérément limité, puisque toute bogue dans le noyau est particulièrement sérieuse, pouvant planter la machine ou pire, permettre son piratage. Vous ne pouvez pas faire de boucles générales, par exemple. eBPF est surtout répandu dans le monde Linux (et c'est là où vous trouverez beaucoup de ressources) où il est une alternative aux modules chargés dans le noyau. Pas mal du code réseau d'Android est ainsi en eBPF. Normalisé ici, eBPF peut être mis en œuvre sur d'autres noyaux (il tourne sur Windows, par exemple). Le monde eBPF est très riche, il y a plein de logiciels (pas toujours faciles à utiliser), plein de tutoriels (pas toujours à jour et qui ne correspondent pas toujours à votre système d'exploitation) mais cet article se focalise sur le sujet du RFC : le jeu d'instructions.
On trouve de nombreux exemples d'utilisation en production par exemple le répartiteur de charge Katran chez Facebook, via lequel vous êtes certainement passé, si vous utilisez Facebook. En plus expérimental, j'ai trouvé amusant qu'on puisse modifier les réponses DNS en eBPF.
Passons tout de suite à la description de ce jeu
d'instructions (ISA = Instruction Set
Architecture). D'abord, les types (section 2.1) :
u32
est un entier non
signé sur 32 bits, s16
, un signé
sur 16 bits, etc. eBPF fournit des fonctions de conversions utiles
(section 2.2) comme be16
qui convertit en
gros boutien (le RFC cite IEN137…). Au
passage, une mise en œuvre d'eBPF n'est pas obligée de tout fournir
(section 2.4). La norme décrit des groupes de conformité et une
implémentation d'eBPF doit lister quels groupes elle met en
œuvre. Le groupe base32
(qui n'a rien à voir
avec le Base32 du RFC 4648) est le minimum requis dans tous les cas. Par
exemple, divmul32
ajoute multiplication et
division. Tous ces groupes figurent dans un registre IANA.
Les instructions eBPF sont encodées en 64 ou 128 bits (section
3). On y trouve les instructions classiques de tout jeu, les
opérations arithmétiques (comme ADD
), logiques
(comme AND
), les sauts
(JA
, JEQ
et autrs), qui se
font toujours vers l'avant, pour, je suppose, ne pas permettre de boucles
(souvenez-vous du problème de l'arrêt, qui n'a
pas de solution avec un jeu
d'instructions plus étendu), l'appel de fonction, etc.
En parlant de fonctions, eBPF ne peut pas
appeler n'importe quelle fonction. Il y a deux sortes de fonctions
utilisables, les fonctions d'aide (section 4.3.1), pré-définies par
la plateforme utilisée, et non normalisées (pour celles de Linux,
voir la
documentation, qui est sous
Documentation/bpf
si vous avez les sources du
noyau). Il y a aussi les fonctions locales (section 4.3.2), définies
par le programme eBPF.
Il y a enfin des instructions pour lire et écrire dans la mémoire
(LD
, ST
, etc). Pour
mémoriser plus facilement, eBPF utilise
des dictionnaires (maps,
cf. section 5.4.1).
La section 6 concerne la sécurité, un point évidemment crucial puisque les programmes eBPF tournent dans le noyau, où les erreurs ne pardonnent pas. Un programme eBPF malveillant peut provoquer de nombreux dégâts. C'est pour cela que, sur Linux, seul root peut charger un tel programme dans le noyau. Le RFC recommande de faire tourner ces programmes dans un environnement limité (bac à sable), de limiter les ressources dont ils disposent et de faire tourner des vérifications sur le programme avant son exécution (par exemple, sur Linux, regardez cette documentation ou bien l'article « Simple and Precise Static Analysis of Untrusted Linux Kernel Extensions »).
Enfin, section 7, les registres (pas les registres du processeur, ceux où on enregistre les codes utilisés). Deux registres IANA sont créés, celui des groupes de conformité et celui du jeu d'instructions. L'annexe A du RFC donne les valeurs actuelles. Les registres sont extensibles et la politique d'enregistrement est « Spécification nécessaire » et « Examen par un expert », cf. RFC 8126. (J'avoue ne pas savoir pourquoi, si les opcodes sont enregistrés, les mnémoniques ne le sont pas, cela rend les registres difficiles à lire.)
Un peu d'histoire, au passage. eBPF est dérivé de BPF, ce qui voulait dire Berkeley Packet Filter, et était spécifique au filtrage des paquets réseau. Cet usage a été notamment popularisé par tcpdump. D'ailleurs, ce programme a une option pour afficher le code BPF produit :
% sudo tcpdump -d port 53 (000) ldh [12] (001) jeq #0x86dd jt 2 jf 10 (002) ldb [20] (003) jeq #0x84 jt 6 jf 4 (004) jeq #0x6 jt 6 jf 5 (005) jeq #0x11 jt 6 jf 23 (006) ldh [54] … (021) jeq #0x35 jt 22 jf 23 (022) ret #262144 (023) ret #0
Si vous voulez vous mettre à eBPF (attention, la courbe
d'apprentissage va être raide), man 4 bpf
est
utile. Typiquement, vous écrirez vos programmes dans un
sous-ensemble de C et vous
compilerez en eBPF, par exemple avec clang,
après avoir installé tous les outils et bibliothèques nécessaires
(il faut souvent des versions assez récentes) :
% cat count.c … int count_packets(struct __sk_buff *skb) { __u32 key = 0; __u64 *counter; counter = bpf_map_lookup_elem(&pkt_counter, &key); if (counter) { (*counter)++; } return 0; } … % clang -target bpf -c count.c % file count.o count.o: ELF 64-bit LSB relocatable, eBPF, version 1 (SYSV), not stripped % objdump -d count.o … 0000000000000000 <count_packets>: 0: 7b 1a f8 ff 00 00 00 00 stxdw [%r10-8],%r1 8: b7 01 00 00 00 00 00 00 mov %r1,0 10: 63 1a f4 ff 00 00 00 00 stxw [%r10-12],%r1 18: 18 01 00 00 00 00 00 00 lddw %r1,0 20: 00 00 00 00 00 00 00 00 28: bf a2 00 00 00 00 00 00 mov %r2,%r10 30: 07 02 00 00 f4 ff ff ff add %r2,-12
(Notez l'utilisation du désassembleur objdump.) Vous pouvez alors charger le code eBPF dans votre noyau, par exemple avec bpftool (et souvent admirer de beaux messages d'erreur comme « libbpf: elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+ »). Si tout fonctionne, votre code eBPF sera appelé par le noyau lors d'événements particuliers que vous avez indiqués (par exemple la création d'un processus, ou bien l'arrivée d'un paquet par le réseau) et fera alors ce que vous avez programmé. Comme me le fait remarquer Pierre Lebeaupin, il y a une bogue dans le source ci-dessus : l'incrémentation du compteur n'est pas atomique et donc, si on a plusieurs CPU, on risque de perdre certaines incrémentations. La solution de ce problème est laissé à la lectrice.
Un exemple d'utilisation d'eBPF pour observer ce que fait le noyau (ici avec un outil qui fait partie de bcc), on regarde les exec :
% sudo /usr/sbin/execsnoop-bpfcc PCOMM PID PPID RET ARGS check_disk 389622 1628 0 /usr/lib/nagios/plugins/check_disk -c 10% -w 20% -X none -X tmpfs -X sysfs -X proc -X configfs -X devtmpfs -X devfs -X check_disk 389623 1628 0 /usr/lib/nagios/plugins/check_disk -c 10% -w 20% -X none -X tmpfs -X sysfs -X proc -X configfs -X devtmpfs -X devfs -X check_swap 389624 1628 0 /usr/lib/nagios/plugins/check_swap -c 25% -w 50% check_procs 389625 1628 0 /usr/lib/nagios/plugins/check_procs -c 400 -w 250 ps 389627 389625 0 /bin/ps axwwo stat uid pid ppid vsz rss pcpu etime comm args sh 389632 389631 0 /bin/sh -c [ -x /usr/lib/php/sessionclean ] && if [ ! -d /run/systemd/system ]; then /usr/lib/php/sessionclean; fi sessionclean 389633 1 0 /usr/lib/php/sessionclean sort 389635 389633 0 /usr/bin/sort -rn -t: -k2,2 phpquery 389638 389634 0 /usr/sbin/phpquery -V expr 389639 389638 0 /usr/bin/expr 2 - 1 sort 389642 389638 0 /usr/bin/sort -rn
Le code eBPF est interprété par une machine virtuelle ou bien traduit à la volée en code natif.
Même ChatGPT peut écrire de l'eBPF (les tours de Hanoi et un serveur DNS).
De nombreux exemples se trouvent dans le répertoire
samples/bpf
des sources du noyau Linux. (Le
fichier README.rst
explique comment compiler
mais seulement dans le cadre de la compilation d'un noyau. En gros,
c'est make menuconfig
, cd
samples/bpf
puis make -i
.) Un bon
exemple, relativement simple, pour commencer avec le réseau est
tcp_clamp_kern.c
.
Si vous préférez travailler en Go (là aussi, avec un Go récent…), il existe un bon projet. Si vous suivez bien la documentation, vous pourrez compiler des programmes et les charger :
% go mod init ebpf-test % go mod tidy % go get github.com/cilium/ebpf/cmd/bpf2go % go generate % go build % sudo ./ebpf-test 2024/08/20 15:21:43 Counting incoming packets on veth0.. … 2024/08/20 15:22:03 Received 25 packets 2024/08/20 15:22:04 Received 26 packets 2024/08/20 15:22:05 Received 27 packets 2024/08/20 15:22:06 Received 502 packets <- ping -f 2024/08/20 15:22:07 Received 57683 packets 2024/08/20 15:22:08 Received 75237 packets ^C2024/08/20 15:22:09 Received signal, exiting..
Vous trouverez beaucoup de ressources eBPF sur
. Et si vous voulez plonger dans
les détails précis des choix de conception d'eBPF, je recommande
ce
document.https://ebpf.io/
Ce RFC avait fait l'objet de pas mal de débats à l'IETF car, normalement, l'IETF ne normalise pas de langages de programmation ou de jeux d'instructions. (La première réunion était à l'IETF 116 en mars 2023 donc c'est quand même allé assez vite.)
Date de publication du RFC : Octobre 2024
Auteur(s) du RFC : A.D. Olson, P. Eggert
(UCLA), K. Murchison (Fastmail)
Chemin des normes
Première rédaction de cet article le 31 octobre 2024
Ce nouveau RFC
documente un format déjà ancien et largement déployé, TZif, un
format de description des fuseaux
horaires. Il définit également des types MIME pour ce format,
application/tzif
et
application/tzif-leap
. Il remplace le premier
RFC de normalisation de ce format, le RFC 8536, mais il y a très peu de changements. Bienvenue donc
à la version 4 du format, spécifiée dans ce RFC.
Ce format existe depuis quarante ans (et a pas mal évolué pendant ce temps) mais n'avait apparemment jamais fait l'objet d'une normalisation formelle avant le RFC 8536 en 2019. La connaissance des fuseaux horaires est indispensable à toute application qui va manipuler des dates, par exemple un agenda. Un fuseau horaire se définit par un décalage par rapport à UTC, les informations sur l'heure d'été, des abréviations pour désigner ce fuseau (comme CET pour l'heure de l'Europe dite « centrale ») et peut-être également des informations sur les secondes intercalaires. Le format iCalendar du RFC 5545 est un exemple de format décrivant les fuseaux horaires. TZif, qui fait l'objet de ce RFC, en est un autre. Contrairement à iCalendar, c'est un format binaire.
TZif vient à l'origine du monde Unix et est apparu dans les années 1980, quand le développement de l'Internet, qui connecte des machines situées dans des fuseaux horaires différents, a nécessité que les machines aient une meilleure compréhension de la date et de l'heure. Un exemple de source faisant autorité sur les fuseaux horaires est la base de l'IANA décrite dans le RFC 6557 et dont l'usage est documenté à l'IANA. Pour la récupérer, voir par exemple le RFC 7808.
La section 2 de notre RFC décrit la terminologie du domaine :
time()
, à savoir le nombre de
secondes depuis l'epoch, donc depuis le 1
janvier 1970. Il ne tient pas compte des secondes intercalaires,
donc il existe aussi un « temps Unix avec secondes intercalaires »
(avertissement : tout ce qui touche au temps et aux calendriers
est compliqué).
C'est ce dernier qui est utilisé dans le format TZif, pour
indiquer les dates et heures des moments où se fait une transition
entre heure d'hiver et heure d'été.La section 3 de notre RFC décrit le format lui-même. Un fichier TZif est composé d'un en-tête (taille fixe de 44 octets) indiquant entre autres le numéro de version de TZif. La version actuelle est 4. Ensuite, on trouve les données. Dans la version 1 de TZif, le bloc de données indiquait les dates de début et de fin des passages à l'heure d'été sur 32 bits, ce qui les limitait aux dates situées entre 1901 et 2038. Les versions ultérieures de TZif sont passées à 64 bits, ce qui permet de tenir environ 292 milliards d'années mais le bloc de données de la version 1 reste présent, au cas où il traine encore des logiciels ne comprenant que la version 1. Notez que ces 64 bits permettent de représenter des dates antérieures au Big Bang, mais certains logiciels ont du mal avec des valeurs situées trop loin dans le passé.
Les versions 2, 3 et 4 ont un second en-tête de 44 octets, et un bloc de données à elles. Les vieux logiciels arrêtent la lecture après le premier bloc de données et ne sont donc normalement pas gênés par cet en-tête et ce bloc supplémentaires. Les logiciels récents peuvent sauter le bloc de données de la version 1, qui ne les intéresse a priori pas (voir section 4 et annexe A). C'est au créateur du fichier de vérifier que les blocs de données destinés aux différentes versions sont raisonnablement synchrones, en tout cas pour les dates antérieures à 2038.
Nouveauté apparue avec la version 2, il y a aussi un pied de page à
la fin. Les entiers sont stockés en gros boutien, et en complément à deux. L'en-tête
commence par la chaîne magique « TZif » (U+0054 U+005A U+0069
U+0066), et comprend la longueur du bloc de données (qui dépend du
nombre de transitions, de secondes intercalaires et d'autres
informations à indiquer). Le bloc de données contient la liste des
transitions, le décalage avec UT, le nom du fuseau horaire, la liste des
secondes intercalaires, etc. Vu par le mode hexadécimal
d'Emacs, voici le début d'un fichier Tzif
version 2 (pris sur une Ubuntu, dans
/usr/share/zoneinfo/Europe/Paris
). On voit bien
la chaîne magique, puis le numéro de version, et le début du bloc de
données :
00000000: 545a 6966 3200 0000 0000 0000 0000 0000 TZif2........... 00000010: 0000 0000 0000 000d 0000 000d 0000 0000 ................ 00000020: 0000 00b8 0000 000d 0000 001f 8000 0000 ................ 00000030: 9160 508b 9b47 78f0 9bd7 2c70 9cbc 9170 .`P..Gx...,p...p 00000040: 9dc0 48f0 9e89 fe70 9fa0 2af0 a060 a5f0 ..H....p..*..`.. ...
Avec od, ça donnerait :
% od -x -a /usr/share/zoneinfo/Europe/Paris 0000000 5a54 6669 0032 0000 0000 0000 0000 0000 T Z i f 2 nul nul nul nul nul nul nul nul nul nul nul 0000020 0000 0000 0000 0d00 0000 0d00 0000 0000 nul nul nul nul nul nul nul cr nul nul nul cr nul nul nul nul 0000040 0000 b800 0000 0d00 0000 1f00 0080 0000 nul nul nul 8 nul nul nul cr nul nul nul us nul nul nul nul 0000060 6091 8b50 479b f078 d79b 702c bc9c 7091 dc1 ` P vt esc G x p esc W , p fs < dc1 p ...
Des exemples détaillés et commentés de fichiers TZif figurent en annexe B. À lire si vous voulez vraiment comprendre les détails du format.
Le pied de page indique notamment les extensions à la variable d'environnement TZ. Toujours avec le mode hexadécimal d'Emacs, ça donne :
00000b80: 4345 542d 3143 4553 542c 4d33 2e35 2e30 CET-1CEST,M3.5.0 00000b90: 2c4d 3130 2e35 2e30 2f33 0a ,M10.5.0/3.
On a vu que le format TZif avait une histoire longue et compliquée. La section 4 du RFC est entièrement consacrée aux problèmes d'interopérabilité, liés à la coexistence de plusieurs versions du format, et de beaucoup de logiciels différents. Le RFC conseille (sections 4 et 5) :
application/tzif-leap
ou
application/tzif
(s'il n'indique pas les
secondes intercalaires). Ces types MIME
sont désormais dans le registre
officiel (cf. section 9 du RFC).L'annexe A du RFC en rajoute, tenant compte de l'expérience accumulée ; par exemple, certains lecteurs de TZif n'acceptent pas les noms de fuseaux horaires contenant des caractères non-ASCII et il peut donc être prudent de ne pas utiliser ces caractères. Plus gênant, il existe des lecteurs assez bêtes pour planter lorsque des temps sont négatifs. Or, les entiers utilisant dans TZif sont signés, afin de pouvoir représenter les moments antérieurs à l'epoch. Donc, attention si vous avez besoin de données avant le premier janvier 1970, cela perturbera certains logiciels bogués.
En parlant des noms de fuseaux horaires, le RFC rappelle (section 5) que le sigle utilisé dans le fichier Tzif (comme « CET ») est en anglais et que, si on veut le traduire, cela doit être fait dans l'application, pas dans le fichier. Le RFC donne comme exemple CST, qui peut être présenté comme « HNC », pour « Heure Normale du Centre ».
Autre piège avec ces sigles utilisés pour nommer les fuseaux horaires : ils sont ambigus. PST peut être la côte Ouest des USA mais aussi l'heure du Pakistan ou des Philippines.
La section 7 du RFC donne quelques conseils de sécurité :
Enfin, l'annexe C du RFC liste les changements depuis le RFC 8536, changements qui mènent à cette nouvelle version, la 4. Rien de crucial mais :
Une bonne liste de logiciels traitant ce format figure à l'IANA.
Date de publication du RFC : Septembre 2022
Auteur(s) du RFC : C. Eckel (Cisco Systems)
Pour information
Réalisé dans le cadre du groupe de travail IETF shmoo
Première rédaction de cet article le 31 octobre 2024
L'IETF, l'organisation qui normalise les protocoles de l'Internet a toujours prôné le pragmatisme et le réalisme : ce n'est pas tout d'écrire des normes, il faut encore qu'elles fonctionnent en vrai. Un des outils pour cela est le hackathon qui se déroule traditionnellement le week-end avant les réunions physiques de l'IETF. Ce RFC, écrit par le responsable de ces hackathons, décrit l'organisation de ces événements.
La salle (en cours d'installation) du hackathon à Yokohama en 2023 :
Paradoxalement, alors que cette ambition de réalisme (« we believe in rough consensus and running code ») est ancienne à l'IETF, les hackathons sont relativement récents. Le premier était en 2015 à Dallas. Mais les hackathons font désormais partie de la culture IETF et on n'imagine plus de réunion sans eux. Ils accueillent désormais systématiquement plusieurs centaines de participant·es (cf. section 6 du RFC). (Mon premier était à Chicago.) Au passage, si vous êtes programmeur·se et que vous allez à une réunion IETF, ne ratez pas le hackathon, il en vaut la peine. Le prochain commence ce samedi, le 2 novembre 2024, à Dublin.
Donc, le but du hackathon à l'IETF (section 1 du RFC) est de tester les normes en cours d'élaboration, de voir si la future spécification est claire et réaliste, et de faire en sorte que les gens qui écrivent les normes (qui ne sont pas forcément des développeur·ses) interagissent avec ceux et celles qui mettent en œuvre les normes. (Cela peut paraitre étonnant, mais beaucoup de SDO ne fonctionnent pas comme cela ; la norme est écrite par des gens qui sont très loin du terrain et qui se moquent du caractère réaliste et effectif de leurs textes.) Le code qui tourne est souvent plus significatif qu'une opinion exprimée pendant la réunion. Et le hackathon est aussi l'occasion de travailler en commun (surtout si on est présent·e physiquement), ce qui fait avancer les projets.
Ah, et puisqu'on parle de collaboration, contrairement à certains hackathons, ceux de l'IETF n'ont plus aucune forme de compétition : pas de classement, pas de prix. (Voir la section 7.6 sur le rôle qu'avaient les juges de la compétition et pourquoi cela a été vite supprimé.) En outre, la plupart du code écrit pendant les hackathons est sous une licence libre (la principale exception concerne les gens qui ont modifié un logiciel privateur, par exemple le code de certains routeurs). Du point de vue « juridique », notez que le hackathon est un événement de l'IETF et donc soumis aux règles IETF (voir aussi la section 5.3).
Les hackathons de l'IETF sont gratuits (et il n'est pas forcément nécessaire de payer son voyage, on peut le faire à distance, voir plus loin) et ouverts à tous (cf. section 5.3). On s'inscrit en ligne puis on y va. Si vous êtes débutant·e, ne vous inquiétez pas, on a tous été débutant·es et les hackathons sont justement l'occasion de mêler étudiant·es, expert·es, etc. Une large participation est encouragée.
Comment organise t-on un tel événement ? Charles Eckel, l'auteur du RFC, est pour l'instant le pilier de ces hackathons. Le RFC a été écrit, entre autres, pour transmettre son expérience et permette à d'autres de le seconder ou de lui succéder. La section 2 du RFC détaille les choix effectués. Le hackathon se tient le week-end pour faciliter la participation des gens qui travaillent, notamment de ceux et celles qui ne viennent pas à la réunion IETF la semaine suivante. Et puis ça renforce le côté informel.
Questions horaires, le hackathon de l'IETF n'essaie pas de faire travailler les gens 24 heures sur 24 tout le week-end. La majorité des participant·es au hackathon viennent à l'IETF ensuite et doivent donc rester frai·ches. Le hackathon dure typiquement le samedi de 09:00 à 22:00 et le dimanche de 09:00 à 16:00 (il y a déjà des réunions IETF le dimanche en fin d'après-midi). Si des gens veulent travailler toute la nuit, ielles doivent le faire dans leur chambre.
La nourriture est fournie sur place pour éviter qu'on doive sortir (mais on a évidemment le droit de sortir, les participant·es ne sont pas attaché·es et peuvent estimer plus important d'aller discuter avec d'autres participant·es en dehors du hackathon). Et, comme le note le RFC, c'est une motivation supplémentaire pour faire venir les gens (on mange bien).
Et pour les gens qui sont à distance ? Le problème avait commencé à se poser pour la réunion IETF 107 prévue à Vancouver et annulée au dernier moment pour cause de Covid. Il y avait eu un effort pour maintenir un hackathon en distanciel mais cela n'avait pas intéressé grand'monde. (Un des plus gros problèmes du distanciel est le décalage horaire. Les gens qui n'étaient pas en PST n'avaient montré aucun enthousiasme pour le hackathon.) Cela s'est mieux passé par la suite, avec des réunions entièrement en ligne pendant la pandémie. Aujourd'hui, les réunions ont repris en présentiel mais une partie des participant·es, aussi bien à l'IETF qu'au hackathon, sont à distance. (Mon opinion personnelle est que c'est peu utile ; l'intérêt du hackathon est la collaboration intense avec les gens qui sont juste là. En travaillant à distance, on perd cette collaboration. Autant travailler tout seul dans son coin.) Une approche intermédiaire, très utilisée à Maurice, est d'avoir une réunion en présentiel locale, où les gens travaillent à distance sur le hackathon. Cela permet de garder un côté collectif sympa.
Tout cela (à commencer par les repas, et bien sûr la salle, mais elle est parfois incluse dans le contrat global de l'IETF pour sa réunion) coûte de l'argent. La section 3 décrit les sources de financement, qui permettent de garder le hackathon gratuit pour les participant·es. Il y a, comme souvent dans les conférences techniques, des sponsors. (Pour le prochain hackathon, ce seront Ericsson, Meta et l'ICANN.) Mais il y a aussi un financement par l'IETF elle-même (car on ne trouve pas toujours des sponsors). Le RFC précise même quels repas seront sacrifiés s'il n'y a pas assez d'argent (le diner du samedi est considéré comme moins important que les déjeuners, car les participant·es pourront toujours diner en rentrant).
Ah, et les T-shirts ? Pas de hackathon sans T-shirt. Le RFC donne des statistiques intéressantes, comme la répartition par taille aux précédents hackathons.
La participation à distance dispense du coût des repas mais il faut ajouter celle des systèmes de communication utilisés, notamment Meetecho et Gather. (Avant de proposer un autre système, rappelez-vous qu'il y a des centaines de participant·es actif·ves au hackathon et qu'il faut une solution qui tienne la charge.)
À la fin du hackathon, les participant·es présentent leur travail, les résultats obtenus et les conclusions qu'on peut en tirer pour les normes en cours de développement (section 4). Au début, il y avait également une session de présentation des projets au début du hackathon mais elle a dû être abandonnée au fur et à mesure que le hackathon grossissait. La présentation initiale se fait désormais sur le Wiki (voir par exemple la prochaine et la page où on peut aller si on cherche une équipe ou bien des volontaires). C'est sur ce Wiki que les champions (les gens qui ont une idée et organisent une activité particulière au hackathon, cf section 7.4) essaient de recruter. Quant aux présentations finales, elles sont publiées sur Github. C'est aussi là qu'on trouvera le code produit lorsqu'il n'est pas sur un dépôt extérieur (section 5.6).
La liste des projets affichés dans la salle du hackathon de Yokohama en 2023 :
On a parlé des outils utilisés, lors de la section sur le financement. La section 5 dresse une liste plus complète des outils logiciels qui servent pour le hackathon. Il y a évidemment, comme pour tout travail IETF, le Datatracker (qui a une section sur le hackathon). Tout aussi évidemment, puisque l'IETF travaille largement avec des listes de diffusion, il y a une liste des participant·es au hackathon.
Pour profiter de tous ces outils, il faut un réseau à forte capacité, fiable, et évidemment sans aucun filtrage. Lors de la réunion de Beijing, les négociations avec les autorités avaient été serrées et l'accord final imposait un contrôle d'accès aux salles de l'IETF, pour éviter que des citoyens chinois n'en profitent. (Normalement, il n'y a aucun contrôle à l'entrée de l'IETF, personne ne vérifie les badges.) Le groupe qui s'occupe de monter et de démonter le réseau de l'IETF a donc en plus la charge du réseau du hackathon. Celui-ci peut en outre nécessiter des services spéciaux, afin de tester en présence de tels services (NAT64, prefix delegation, etc). Il y a même un accès VPN, pour celles et ceux qui travaillent à distance.
Date de publication du RFC : Octobre 2024
Auteur(s) du RFC : R. Hinden (Check Point
Software), G. Fairhurst (University of
Aberdeen)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF 6man
Première rédaction de cet article le 31 octobre 2024
Parmi les différentes options qui peuvent être placées dans un en-tête d'un paquet IPv6, certaines sont à traiter par chaque routeur situé sur le trajet. On les appelle les options « par saut » (hop-by-hop). Elles sont très peu utilisées en pratique, entre autres parce que leur traitement, tel que spécifié dans le RFC 8200, est trop contraignant pour les routeurs. Ce nouveau RFC change donc les règles, dans le sens d'un plus grand pragmatisme.
À part l'en-tête « Hop-by-hop Options » (RFC 8200, section 4.3), tous les en-têtes IPv6 ne concernent que les machines terminales. « Hop-by-hop Options », lui, concerne les routeurs et, avant le RFC 8200, tous les routeurs sur le trajet avaient l'obligation de le lire et d'agir en fonction des options qu'il contenait (la liste complète des options possibles est dans un registre IANA). Bien trop coûteuse pour les routeurs, cette obligation a été supprimée par le RFC 8200. Ce nouveau RFC 9673 modifie le traitement des options de cet en-tête (et donc le RFC 8200) dans l'espoir qu'il voit enfin un vrai déploiement dans l'Internet (actuellement, cet en-tête par saut - hop-by-hop - est quasiment inutilisé). Si vous concevez des routeurs, et êtes pressé·e, sautez directement à la section 5 du RFC, qui décrit les nouvelles règles, mais ce serait dommage.
Petite révision sur l'architecture des routeurs (section 3 du RFC). Les routeurs de haut de gamme ont une voie rapide (fast path) pour le traitement des paquets, lorsque ceux-ci n'ont pas de demande particulière. Mise en œuvre en dehors du processeur principal du routeur, cette voie rapide est traitée par des circuits spécialisés, typiquement des ASIC. Si le paquet nécessite des opérations plus complexes, on passe par une voie plus lente, utilisant des méthodes et du matériel plus proches de ceux d'un ordinateur classique. (Les RFC 6398 et RFC 6192 sont des lectures recommandées ici.) D'autre part, on distingue souvent, dans le routeur, la transmission (forwarding plane) et le contrôle (control plane). La transmission est le travail de base du routeur (transmettre les paquets reçus sur une interface via une autre interface, et le plus vite possible), le contrôle regroupe notamment les opérations de manipulation de la table de routage, par exemple lors de mises à jour reçues via des protocoles comme OSPF ou BGP. Contrairement à la transmission, le contrôle n'est pas en « temps réel ».
Aujourd'hui, un paquet IPv6 utilisant des options par saut risque fort de ne même pas arriver à destination, sacrifié par des routeurs qui ne veulent pas le traiter. (Voir le RFC 7872, l'exposé « Internet Measurements: IPv6 Extension Header Edition » ou l'article « Is it possible to extend IPv6? ».)
Que disent donc les nouvelles procédures (section 5) ?
Pour faciliter la tâche des routeurs, et toujours dans l'espoir que les options par saut deviennent enfin une possibilité réaliste, la section 6 du RFC encadre la définition de nouveaux en-têtes (le RFC 8200 recommandait carrément de ne plus en définir, tant qu'on n'avait pas mieux défini leur utilisation). Les éventuelles futures options doivent être simples à traiter et conçues en pensant au travail qu'elles imposeront au routeur. Le protocole qui les utilise doit intégrer le fait que le routeur est autorisé à ignorer cette option, voire qu'il puisse jeter le paquet.
Ah, et un mot sur la sécurité (section 8). Plusieurs RFC ont déjà documenté les problèmes de sécurité que peuvent poser les options par saut, notamment le risque qu'elles facilitent une attaque par déni de service sur le routeur : RFC 6398, RFC 6192, RFC 7045 et RFC 9098.
Est-ce que le déploiement de ce RFC va améliorer les choses pour l'en-tête par saut, qui est jusqu'à présent un exemple d'échec ? Je suis assez pessimiste, étant donné la difficulté à changer des comportements bien établis.
Un peu d'histoire pour terminer (section 4 du RFC) : les
premières normes IPv6 (RFC 1883, puis RFC 2460) imposaient à tous les routeurs d'examiner
et de traiter les options par saut. Le RFC 7045 avait été le premier à constater que cette règle
n'était pas respectée et ne pouvait pas l'être vu l'architecture des
routeurs modernes. Le problème de performance dans le traitement des
options était d'autant plus grave que les options n'avaient pas
toutes le même format (cela a été résolu par le RFC 6564, qui imposait un format unique). Le résultat, comme
vu plus haut, était que les routeurs ignoraient les options par saut
ou, pire, jetaient le paquet qui les contenait. (Le RFC 9288 et l'article « Threats
and Surprises behind IPv6 Extension Headers »
expliquent pourquoi c'est une mauvaise
idée. L'Internet Draft
draft-ietf-v6ops-hbh
discute également cette
question.)
Date de publication du RFC : Octobre 2024
Auteur(s) du RFC : J. M. Halpern (Ericsson), J. Daley
(IETF Administration LLC)
Pour information
Première rédaction de cet article le 31 octobre 2024
Les normes publiées par l'IETF ne sont pas que des documents techniques à seule destination des techniciens. L'Internet et, de manière plus générale, les protocoles TCP/IP sont aussi une grosse industrie qui brasse beaucoup d'argent. Il y a donc un risque que des acteurs de cette industrie essaient d'influencer les normes à leur profit, par exemple en formant des alliances qui, dans certains pays, seraient illégales au regard des lois antitrust. Ce court RFC administratif explique aux participant·es IETF ce que sont ces lois et comment éviter de les violer.
En effet, les organisations, notamment les entreprises à but lucratif, qui participent à l'IETF peuvent être concurrentes sur leurs marchés. Or, le développement de normes nécessite de la collaboration entre ces concurrents. Pour maintenir une concurrence et pour éviter les ententes, plusieurs pays ont des lois, dites « antitrust », lois que des participant·es à l'IETF ne connaissent pas forcément bien. La justification idéologique de ces lois est rappelée par le RFC, dans le cas étatsunien mais d'autres pays capitalistes ont des principes similaires : « Competition in a free market benefits consumers through lower prices, better quality and greater choice. Competition provides businesses the opportunity to compete on price and quality, in an open market and on a level playing field, unhampered by anticompetitive restraints. » Que ce soit vrai ou pas, peu importe, les lois antitrust doivent être respectées. Ce RFC n'édicte pas de règles pour l'IETF (« respectez la loi » est de toute façon déjà obligatoire), mais il explique des subtilités juridiques aux participant·es à l'IETF.
Il y a en effet deux risques pour l'IETF, qu'un·e représentant officiel de l'IETF soit accusé de comportement anti-concurrentiel, engageant la responsabilité de l'organisation, ou que des participant·es soient accusés de comportement anti-concurrentiel, ce qui n'engagerait pas la responsabilité de l'IETF mais pourrait affecter sa réputation.
Les participant·es à l'IETF sont censés suivre des règles dont certaines limitent déjà le risque de comportement anti-concurrentiel, entre autres :
Maintenant, s'y ajoutent les questions spécifiques au respect des lois sur la concurrence. La section 4, le cœur de ce RFC, attire l'attention sur :
legal@ietf.org
) ou via
le service
spécifique pour les lanceurs d'alerte.Date de publication du RFC : Avril 2024
Auteur(s) du RFC : M. Loffredo, M. Martinelli (IIT-CNR/Registro.it)
Chemin des normes
Réalisé dans le cadre du groupe de travail IETF regext
Première rédaction de cet article le 28 octobre 2024
Ce RFC normalise une extension au protocole d'accès à l'information RDAP pour permettre des recherches inversées, des recherches par le contenu (« quels sont tous les noms de domaine de cette personne ? »).
Alors, tout d'abord, un avertissement. L'extension normalisée dans ce RFC est dangereuse pour la vie privée. Je détaille ce point plus loin mais ne réclamez pas tout de suite le déploiement de cette extension : lisez tout d'abord. C'est dès sa section 1 que le RFC met en garde contre un déploiement hâtif !
RDAP (normalisé dans les RFC 9082 et RFC 9083), comme son prédécesseur whois, permet d'obtenir des informations dites sociales (nom, adresse, numéro de téléphone, etc) sur les personnes (morales ou physiques) associées à une ressource Internet réservée, comme un nom de domaine ou un adresse IP. Une limite importante de ces deux protocoles est qu'il faut connaitre l'identifiant (nom de domaine, adresse IP) de la ressource. Or, certaines personnes seraient intéressés à faire l'inverse, découvrir les ressources à partir d'informations sociales. C'est le cas par exemple de juristes cherchant le portefeuille de noms de domaine de quelqu'un qu'ils soupçonnent de menacer leur propriété intellectuelle. Ou de chercheurs en sécurité informatique étudiant toutes les adresses IP utilisées par le C&C d'un botnet et voulant en découvrir d'autres. Ce RFC normalise justement un moyen de faire des recherches inverses. whois n'avait jamais eu une telle normalisation, à cause des risques pour la vie privée, risques qui sont peut-être moins importants avec RDAP.
(Notez quand même que le RFC 9082, section 3.2.1, prévoyait déjà certaines recherches inverses, d'un domaine à partir du nom ou de l'adresse d'un de ses serveurs de noms.)
Passons aux détails techniques (section 2). L'URL
d'une requête inverse va inclure dans son chemin
/reverse_search
et, bien sûr, des critères de
recherche. Par exemple,
/domains/reverse_search/entity?fn=Jean%20Durand&role=registrant
donnera tous les domaines dont le titulaire
(registrant) se nomme Jean Durand
(fn
est défini dans la section 6.2.1 du RFC 6350). Le terme après
/reverse_search
indique le type des données
auxquelles s'appliquent les critères de recherche (actuellement,
c'est forcément entity
, une personne morale ou
physique).
La plupart des recherches inverses porteront sans doute sur quelques champs comme l'adresse de courrier électronique ou le handle (l'identifiant d'une entité). La section 8 décrit les possibilités typiques mais un serveur RDAP choisit de toute façon ce qu'il permet ou ne permet pas.
La sémantique exacte d'une recherche inverse est décrite en
JSONPath (RFC 9535). Vous trouvez le JSONPath dans la réponse (section
5 du RFC), dans le membre
reverse_search_properties_mapping
. Par exemple :
"reverse_search_properties_mapping": [ { "property": "fn", "propertyPath": "$.entities[*].vcardArray[1][?(@[0]=='fn')][3]" } ]
L'expression JSONPath
$.entities[*].vcardArray[1][?(@[0]=='fn')][3]
indique que le serveur va faire une recherche sur le membre
fn
du tableau vCard
(RFC 7095). Oui, elle est compliquée, mais
c'est parce que le format vCard est compliqué. Heureusement, on
n'est pas obligé de connaitre JSONPath pour utiliser les recherches
inverses, uniquement pour leur normalisation (section 3).
Pour savoir si le serveur RDAP que vous interrogez gère cette
extension et quelles requêtes il permet, regardez sa réponse à la
question help
(RFC 9082,
section 3.1.6, et RFC 9083, section 7) ; s'il
accepte les requêtes inverses, vous y trouverez la valeur
reverse_search
dans le membre
rdapConformance
(section 9), par exemple :
"rdapConformance": [ "rdap_level_0", "reverse_search" ]
Pour les recherches acceptées, regardez le membre
reverse_search_properties
. Par exemple :
"reverse_search_properties": [ { "searchableResourceType": "domains", "relatedResourceType": "entity", "property": "fn" } ]
Ici, le serveur indique qu'il accepte les requêtes inverses pour trouver des noms de domaine en fonction d'un nom d'entité (ce que nous avons fait dans l'exemple plus haut). Voir la section 4 pour les détails. Si vous tentez une requête inverse sur un serveur, et que le serveur n'accepte pas les requêtes inverses, ou tout simplement n'accepte pas ce type particulier de recherche inverse que vous avez demandé, il répondra avec le code de retour HTTP 501 (section 7). Vous aurez peut-être aussi un 400 si votre requête déplait au serveur pour une raison ou l'autre.
L'extension est désormais placée dans le registre des extensions RDAP. En outre, deux nouveaux registres sont créés, RDAP Reverse Search, pour les recherches possibles et RDAP Reverse Search Mapping pour les règles JSONPath. Pour y ajouter des valeurs, la politique (RFC 8126) est « spécification nécessaire ».
Revenons maintenant aux questions de vie privée (RFC 6973), que je vous avais promises. La section 12 du RFC détaille le problème. La puissance des recherches inverses les rend dangereuses. Une entreprise concurrente pourrait regarder vos noms de domaine et ainsi se tenir au courant, par exemple, d'un nouveau projet ou d'un nouveau produit. Un malveillant pourrait regarder les noms de domaine d'une personne et identifier ainsi des engagements associatifs que la personne ne souhaitait pas forcément rendre très visibles. Les données stockées par les registres sont souvent des données personnelles et donc protégées par des lois comme le RGPD. Le gestionnaire d'un serveur RDAP doit donc, avant d'activer la recherche inverse, bien étudier la sécurité du serveur (section 13) mais aussi (et ce point n'est hélas pas dans le RFC) se demander si cette activation est vraiment une bonne idée.
En théorie, RDAP pose moins de problème de sécurité que whois pour ce genre de recherches, car il repose sur HTTPS (le chiffrement empêche un tiers de voir questions et réponses) et, surtout, il permet l'authentification ce qui rend possible, par exemple, de réserver les recherches inverses à certains privilégiés, avec un grand choix de contrôle d'accès (cf. annexe A). Évidemment, cela laisse ouvertes d'autres questions comme « qui seront ces privilégiés ? » et « comment s'assurer qu'ils n'abusent pas ? » (là, les journaux sont indispensables pour la traçabilité, cf. l'affaire Haurus).
Notons qu'outre les problèmes de vie privée, la recherche inverse pose également des problèmes de performance (section 10). Attention avant de la déployer, des requêtes apparemment innocentes pourraient faire ramer sérieusement le serveur RDAP. Si vous programmez un serveur RDAP ayant des recherches inverses, lisez bien les recommandations d'optimisation de la section 10, par exemple en ajoutant des index dans votre SGBD. Et le serveur ne doit pas hésiter, en cas de surcharge, à répondre seulement de manière partielle (RFC 8982 ou RFC 8977).
Je n'ai pas trouvé de code public mettant en œuvre ces recherches inverses. De même, je ne connais pas encore de serveur RDAP déployé qui offre cette possibilité.
Articles des différentes années : 2025 2024 2023 2022 2021 2020 2019 Précédentes années
Syndication : Flux Atom avec seulement les résumés et Flux Atom avec tout le contenu.